Interactive exploration of fuzzy clusters using Neighborgrams

Cite This

Files in this item

Checksum: MD5:e63b153100a6e52c1bec16278fa6965b

BERTHOLD, Michael R., Bernd WISWEDEL, David E. PATTERSON, 2005. Interactive exploration of fuzzy clusters using Neighborgrams. In: Fuzzy Sets and Systems. 149, pp. 21-37. Available under: doi: 10.1016/j.fss.2004.07.009

@article{Berthold2005Inter-5455, title={Interactive exploration of fuzzy clusters using Neighborgrams}, year={2005}, doi={10.1016/j.fss.2004.07.009}, volume={149}, journal={Fuzzy Sets and Systems}, pages={21--37}, author={Berthold, Michael R. and Wiswedel, Bernd and Patterson, David E.} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:contributor>Berthold, Michael R.</dc:contributor> <dcterms:issued>2005</dcterms:issued> <dcterms:available rdf:datatype="">2011-03-24T15:55:33Z</dcterms:available> <dcterms:hasPart rdf:resource=""/> <dc:format>application/pdf</dc:format> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Interactive exploration of fuzzy clusters using Neighborgrams</dcterms:title> <dc:creator>Wiswedel, Bernd</dc:creator> <dcterms:bibliographicCitation>First publ. in: Fuzzy Sets and Systems 149 (2005), pp.21-37</dcterms:bibliographicCitation> <dc:contributor>Patterson, David E.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:abstract xml:lang="eng">We describe an interactive method to generate a set of fuzzy clusters for classes of interest of a given, labeled data set. The presented method is therefore best suited for applications where the focus of analysis lies on a model for the minority class or for small to medium-sized data sets. The clustering algorithm creates one dimensional models of the neighborhood for a set of patterns by constructing cluster candidates for each pattern of interest and then chooses the best subset of clusters that form a global model of the data. The accompanying visualization of these neighborhoods allows the user to interact with the clustering process by selecting, discarding, or fine tuning potential cluster candidates. Clusters can be crisp or fuzzy and the latter leads to a substantial improvement of the classification accuracy.We demonstrate the performance of the underlying algorithm on several data sets from the StatLog project and show its usefulness for visual cluster exploration on the Iris data and a large molecular dataset from the National Cancer Institute.</dcterms:abstract> <dcterms:rights rdf:resource=""/> <dc:creator>Berthold, Michael R.</dc:creator> <dc:contributor>Wiswedel, Bernd</dc:contributor> <dcterms:isPartOf rdf:resource=""/> <dspace:hasBitstream rdf:resource=""/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:date rdf:datatype="">2011-03-24T15:55:33Z</dc:date> <dc:creator>Patterson, David E.</dc:creator> <dspace:isPartOfCollection rdf:resource=""/> <bibo:uri rdf:resource=""/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

Berthold_Interactive_exploration_of_fuzzy_clusters_using_Neighborgrams.pdf 382

This item appears in the following Collection(s)

Attribution-NonCommercial-NoDerivs 2.0 Generic Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 2.0 Generic

Search KOPS


My Account