Visual Analytics : Combining Automated Discovery with Interactive Visualizations
Visual Analytics : Combining Automated Discovery with Interactive Visualizations
Date
2008
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
International patent number
Link to the license
EU project number
225924
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a collection
Publication status
Published in
Discovery science : 11th International Conference, DS 2008, Budapest, Hungary, October 13 - 16, 2008 / Boulicaut, Jean-François (ed.). - Berlin [u.a.] : Springer, 2008. - (Lecture notes in computer science : Lecture notes in artificial intelligence ; 5255). - pp. 2-14. - ISBN 978-3-540-88410-1
Abstract
In numerous application areas fast growing data sets develop with ever higher complexity and dynamics. A central challenge is to filter the substantial information and to communicate it to humans in an appropriate way. Approaches, which work either on a purely analytical or on a purely visual level, do not sufficiently help due to the dynamics and complexity of the underlying processes or due to a situation with intelligent opponents. Only a combination of data analysis and visualization techniques make an effective access to the otherwise unmanageably complex data sets possible.
Visual analysis techniques extend the perceptual and cognitive abilities of humans with automatic data analysis techniques, and help to gain insights for optimizing and steering complicated processes. In the paper, we introduce the basic idea of Visual Analytics, explain how automated discovery and visual analysis methods can be combined, discuss the main challenges of Visual Analytics, and show that combining automatic and visual analysis is the only chance to capture the complex, changing characteristics of the data. To further explain the Visual Analytics process, we provide examples from the area of document analysis.
Visual analysis techniques extend the perceptual and cognitive abilities of humans with automatic data analysis techniques, and help to gain insights for optimizing and steering complicated processes. In the paper, we introduce the basic idea of Visual Analytics, explain how automated discovery and visual analysis methods can be combined, discuss the main challenges of Visual Analytics, and show that combining automatic and visual analysis is the only chance to capture the complex, changing characteristics of the data. To further explain the Visual Analytics process, we provide examples from the area of document analysis.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
KEIM, Daniel A., Florian MANSMANN, Daniela OELKE, Hartmut ZIEGLER, 2008. Visual Analytics : Combining Automated Discovery with Interactive Visualizations. In: BOULICAUT, Jean-François, ed.. Discovery science : 11th International Conference, DS 2008, Budapest, Hungary, October 13 - 16, 2008. Berlin [u.a.]:Springer, pp. 2-14. ISBN 978-3-540-88410-1BibTex
@incollection{Keim2008Visua-5451, year={2008}, title={Visual Analytics : Combining Automated Discovery with Interactive Visualizations}, number={5255}, isbn={978-3-540-88410-1}, publisher={Springer}, address={Berlin [u.a.]}, series={Lecture notes in computer science : Lecture notes in artificial intelligence}, booktitle={Discovery science : 11th International Conference, DS 2008, Budapest, Hungary, October 13 - 16, 2008}, pages={2--14}, editor={Boulicaut, Jean-François}, author={Keim, Daniel A. and Mansmann, Florian and Oelke, Daniela and Ziegler, Hartmut} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5451"> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:contributor>Ziegler, Hartmut</dc:contributor> <dcterms:issued>2008</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">In numerous application areas fast growing data sets develop with ever higher complexity and dynamics. A central challenge is to filter the substantial information and to communicate it to humans in an appropriate way. Approaches, which work either on a purely analytical or on a purely visual level, do not sufficiently help due to the dynamics and complexity of the underlying processes or due to a situation with intelligent opponents. Only a combination of data analysis and visualization techniques make an effective access to the otherwise unmanageably complex data sets possible.<br />Visual analysis techniques extend the perceptual and cognitive abilities of humans with automatic data analysis techniques, and help to gain insights for optimizing and steering complicated processes. In the paper, we introduce the basic idea of Visual Analytics, explain how automated discovery and visual analysis methods can be combined, discuss the main challenges of Visual Analytics, and show that combining automatic and visual analysis is the only chance to capture the complex, changing characteristics of the data. To further explain the Visual Analytics process, we provide examples from the area of document analysis.</dcterms:abstract> <dcterms:title>Visual Analytics : Combining Automated Discovery with Interactive Visualizations</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Ziegler, Hartmut</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5451"/> <dc:contributor>Mansmann, Florian</dc:contributor> <dc:creator>Oelke, Daniela</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Oelke, Daniela</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5451/1/Visual_Analytics.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:32Z</dc:date> <dc:format>application/pdf</dc:format> <dc:creator>Mansmann, Florian</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:bibliographicCitation>First publ. in: Lecture notes in computer science, No. 5255 (2008), pp. 2-14</dcterms:bibliographicCitation> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:32Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5451/1/Visual_Analytics.pdf"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes