Visual Analytics Techniques for Large Multi-Attribute Time Series Data


Dateien zu dieser Ressource

Prüfsumme: MD5:e05ee0a2660b581b45f2e72a10a5b72e

HAO, Ming C., Umeshwar DAYAL, Daniel A. KEIM, 2008. Visual Analytics Techniques for Large Multi-Attribute Time Series Data. Electronic Imaging 2008. San Jose, CA. In: BÖRNER, Katy, ed. and others. Visualization and Data Analysis 2008. Electronic Imaging 2008. San Jose, CA. SPIE, pp. 680908-680908-10. Available under: doi: 10.1117/12.768568

@inproceedings{Hao2008-01-27Visua-5447, title={Visual Analytics Techniques for Large Multi-Attribute Time Series Data}, year={2008}, doi={10.1117/12.768568}, number={6809}, publisher={SPIE}, series={SPIE Proceedings}, booktitle={Visualization and Data Analysis 2008}, pages={680908--680908-10}, editor={Börner, Katy}, author={Hao, Ming C. and Dayal, Umeshwar and Keim, Daniel A.} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:hasPart rdf:resource=""/> <dspace:isPartOfCollection rdf:resource=""/> <dspace:hasBitstream rdf:resource=""/> <dcterms:rights rdf:resource=""/> <dc:contributor>Hao, Ming C.</dc:contributor> <dcterms:isPartOf rdf:resource=""/> <dcterms:title>Visual Analytics Techniques for Large Multi-Attribute Time Series Data</dcterms:title> <dcterms:bibliographicCitation>First publ. in: Visualization and Data Analysis / ed. Katy Börner ... - Bellingham: SPIE, 2008</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="">2011-03-24T15:55:30Z</dcterms:available> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:language>eng</dc:language> <bibo:uri rdf:resource=""/> <dc:format>application/pdf</dc:format> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Dayal, Umeshwar</dc:contributor> <dc:creator>Hao, Ming C.</dc:creator> <dc:date rdf:datatype="">2011-03-24T15:55:30Z</dc:date> <dcterms:abstract xml:lang="eng">Time series data commonly occur when variables are monitored over time. Many real-world applications involve the comparison of long time series across multiple variables (multi-attributes). Often business people want to compare this year s monthly sales with last year s sales to make decisions. Data warehouse administrators (DBAs) want to know their daily data loading job performance. DBAs need to detect the outliers early enough to act upon them. In this paper, two new visual analytic techniques are introduced: The cell-based Visual Time Series highlight significant changes over time within complex data sets and the new Visual Content Query facilitates finding the contents and histories of exceptions, which leads to root cause identification. We show examples of using these techniques to mine customer credit card fraud data to illustrate the wide applicability and usefulness of these techniques.</dcterms:abstract> <dc:creator>Dayal, Umeshwar</dc:creator> <dcterms:issued>2008-01-27</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

EI108_EI107_32Submit.pdf 283

Das Dokument erscheint in:

terms-of-use Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: terms-of-use

KOPS Suche


Mein Benutzerkonto