Probabilistic Proximity Searching Algorithms Based on Compact Partitions

Thumbnail Image
Date
2002
Authors
Bustos Cárdenas, Benjamin Eugenio
Navarro, Gonzalo
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published in
String Processing and Information Retrieval / Laender, Alberto H. F.; Oliveira, Arlindo L. (ed.). - Berlin, Heidelberg : Springer Berlin Heidelberg, 2002. - (Lecture Notes in Computer Science ; 2476). - pp. 284-297. - ISBN 978-3-540-44158-8
Abstract
The main bottleneck of the research in metric space searching is the so-called curse of dimensionality, which makes the task of searching some metric spaces intrinsically difficult, whatever algorithm is used. A recent trend to break this bottleneck resorts to probabilistic algorithms, where it has been shown that one can find 99% of the elements at a fraction of the cost of the exact algorithm. These algorithms are welcome in most applications because resorting to metric space searching already involves a fuzziness in the retrieval requirements. In this paper we push further in this direction by developing probabilistic algorithms on data structures whose exact versions are the best for high dimensions. As a result, we obtain probabilistic algorithms that are better than the previous ones. We also give new insights on the problem and propose a novel view based on time-bounded searching.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BUSTOS CÁRDENAS, Benjamin Eugenio, Gonzalo NAVARRO, 2002. Probabilistic Proximity Searching Algorithms Based on Compact Partitions. In: LAENDER, Alberto H. F., ed., Arlindo L. OLIVEIRA, ed.. String Processing and Information Retrieval. Berlin, Heidelberg:Springer Berlin Heidelberg, pp. 284-297. ISBN 978-3-540-44158-8. Available under: doi: 10.1007/3-540-45735-6_25
BibTex
@inproceedings{BustosCardenas2002-09-18Proba-5445,
  year={2002},
  doi={10.1007/3-540-45735-6_25},
  title={Probabilistic Proximity Searching Algorithms Based on Compact Partitions},
  number={2476},
  isbn={978-3-540-44158-8},
  publisher={Springer Berlin Heidelberg},
  address={Berlin, Heidelberg},
  series={Lecture Notes in Computer Science},
  booktitle={String Processing and Information Retrieval},
  pages={284--297},
  editor={Laender, Alberto H. F. and Oliveira, Arlindo L.},
  author={Bustos Cárdenas, Benjamin Eugenio and Navarro, Gonzalo}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5445">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:30Z</dcterms:available>
    <dc:format>application/pdf</dc:format>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Probabilistic Proximity Searching Algorithms Based on Compact Partitions</dcterms:title>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:bibliographicCitation>First publ. in: Lecture notes in computer science, No. 2476 (2002), pp. 284-297</dcterms:bibliographicCitation>
    <dc:creator>Navarro, Gonzalo</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5445/1/spire02.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:30Z</dc:date>
    <dcterms:issued>2002-09-18</dcterms:issued>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5445"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5445/1/spire02.pdf"/>
    <dcterms:abstract xml:lang="eng">The main bottleneck of the research in metric space searching is the so-called curse of dimensionality, which makes the task of searching some metric spaces intrinsically difficult, whatever algorithm is used. A recent trend to break this bottleneck resorts to probabilistic algorithms, where it has been shown that one can find 99% of the elements at a fraction of the cost of the exact algorithm. These algorithms are welcome in most applications because resorting to metric space searching already involves a fuzziness in the retrieval requirements. In this paper we push further in this direction by developing probabilistic algorithms on data structures whose exact versions are the best for high dimensions. As a result, we obtain probabilistic algorithms that are better than the previous ones. We also give new insights on the problem and propose a novel view based on time-bounded searching.</dcterms:abstract>
    <dc:creator>Bustos Cárdenas, Benjamin Eugenio</dc:creator>
    <dc:contributor>Navarro, Gonzalo</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Bustos Cárdenas, Benjamin Eugenio</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Refereed