KOPS - The Institutional Repository of the University of Konstanz

Models of true arithmetic are integer parts of models of real exponentation

Models of true arithmetic are integer parts of models of real exponentation

Cite This

Files in this item

Checksum: MD5:9b59627403837b665ba49e4fa6f56da5

CARL, Merlin, Lothar Sebastian KRAPP, 2021. Models of true arithmetic are integer parts of models of real exponentation. In: Journal of Logic and Analysis. Department of Philosophy, Carnegie Mellon University. (13), 3. ISSN 1759-9008. Available under: doi: 10.4115/jla.2021.13.3

@article{Carl2021Model-54344, title={Models of true arithmetic are integer parts of models of real exponentation}, year={2021}, doi={10.4115/jla.2021.13.3}, number={13}, volume={}, issn={1759-9008}, journal={Journal of Logic and Analysis}, author={Carl, Merlin and Krapp, Lothar Sebastian}, note={Article Number: 3} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/54344"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:contributor>Carl, Merlin</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-19T08:14:39Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54344"/> <dcterms:abstract xml:lang="eng">Exploring further the connection between exponentiation on real closed fields and the existence of an integer part modelling strong fragments of arithmetic, we demonstrate that each model of true arithmetic is an integer part of an exponential real closed field that is elementarily equivalent to the real numbers with exponentiation and that each model of Peano arithmetic is an integer part of a real closed field that admits an isomorphism between its ordered additive and its ordered multiplicative group of positive elements. Under the assumption of Schanuel’s Conjecture, we obtain further strengthenings for the last statement.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-19T08:14:39Z</dcterms:available> <dc:contributor>Krapp, Lothar Sebastian</dc:contributor> <dc:creator>Krapp, Lothar Sebastian</dc:creator> <dcterms:title>Models of true arithmetic are integer parts of models of real exponentation</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54344/3/Krapp_2-1dezh6kqr1uhq7.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Carl, Merlin</dc:creator> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54344/3/Krapp_2-1dezh6kqr1uhq7.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2021</dcterms:issued> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>

Downloads since Jul 19, 2021 (Information about access statistics)

Krapp_2-1dezh6kqr1uhq7.pdf 28

This item appears in the following Collection(s)

Search KOPS


Browse

My Account