Boosting the Performance of RBF Networks with Dynamic Decay Adjustment
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Radial Basis Function (RBF) Networks, also known as networks of locally-tuned processing units (see [6]) are well known for their ease of use. Most algorithms used to train these types of networks, however, require a fxed architecture, in which the number of units in the hidden layer must be determined before training starts. The RCE training algorithm, introduced by Reilly, Cooper and Elbaum (see [8]), and its probabilistic extension, the P-RCE algorithm, take advantage of a growing structure in which hidden units are only introduced when necessary. The nature of these algorithms allows training to reach stability much faster than is the case for gradient-descent based methods. Unfortunately P-RCE networks do not adjust the standard deviation of their prototypes individually, using only one global value for this parameter. This paper introduces the Dynamic Decay Adjustment (DDA) algorithm which utilizes the constructive nature of the P-RCE algorithm together with independent adaptation of each prototype's decay factor. In addition, this radial adjustment is class dependent and distinguishes between different neighbours. It is shown that networks trained with the presented algorithm perform substantially better than common RBF networks.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERTHOLD, Michael R., Jay DIAMOND, 1995. Boosting the Performance of RBF Networks with Dynamic Decay Adjustment. Advances in Neural Information Processing Systems 7 (NIPS 1994). In: TESAURO, G., ed. and others. Advances in Neural Information Processing Systems 7 (NIPS 1994). 1995BibTex
@inproceedings{Berthold1995Boost-5427, year={1995}, title={Boosting the Performance of RBF Networks with Dynamic Decay Adjustment}, url={https://proceedings.neurips.cc/paper/1994/hash/c8c41c4a18675a74e01c8a20e8a0f662-Abstract.html}, booktitle={Advances in Neural Information Processing Systems 7 (NIPS 1994)}, editor={Tesauro, G.}, author={Berthold, Michael R. and Diamond, Jay} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5427"> <dc:contributor>Berthold, Michael R.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Boosting the Performance of RBF Networks with Dynamic Decay Adjustment</dcterms:title> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:18Z</dc:date> <dcterms:issued>1995</dcterms:issued> <dc:format>application/pdf</dc:format> <dc:creator>Berthold, Michael R.</dc:creator> <dcterms:abstract xml:lang="eng">Radial Basis Function (RBF) Networks, also known as networks of locally-tuned processing units (see [6]) are well known for their ease of use. Most algorithms used to train these types of networks, however, require a fxed architecture, in which the number of units in the hidden layer must be determined before training starts. The RCE training algorithm, introduced by Reilly, Cooper and Elbaum (see [8]), and its probabilistic extension, the P-RCE algorithm, take advantage of a growing structure in which hidden units are only introduced when necessary. The nature of these algorithms allows training to reach stability much faster than is the case for gradient-descent based methods. Unfortunately P-RCE networks do not adjust the standard deviation of their prototypes individually, using only one global value for this parameter. This paper introduces the Dynamic Decay Adjustment (DDA) algorithm which utilizes the constructive nature of the P-RCE algorithm together with independent adaptation of each prototype's decay factor. In addition, this radial adjustment is class dependent and distinguishes between different neighbours. It is shown that networks trained with the presented algorithm perform substantially better than common RBF networks.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5427"/> <dcterms:bibliographicCitation>First publ. in: Advances in Neural Information Processing 7 (1995), pp. 8</dcterms:bibliographicCitation> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5427/1/BeDi95_dda_nips7.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:18Z</dcterms:available> <dc:creator>Diamond, Jay</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5427/1/BeDi95_dda_nips7.pdf"/> <dc:contributor>Diamond, Jay</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> </rdf:Description> </rdf:RDF>