Fuzzy Clustering in Parallel Universes with Noise Detection


Dateien zu dieser Ressource

Prüfsumme: MD5:9821def4ec229d09907171173b9ec1f0

WISWEDEL, Bernd, Michael R. BERTHOLD, 2005. Fuzzy Clustering in Parallel Universes with Noise Detection. ICDM. Houston, TX, USA, 2005. In: IEEE International Conference on Data Mining, Workshop Computational Intelligence in Data Mining. ICDM. Houston, TX, USA, 2005, pp. 29-37

@inproceedings{Wiswedel2005Fuzzy-5422, title={Fuzzy Clustering in Parallel Universes with Noise Detection}, year={2005}, booktitle={IEEE International Conference on Data Mining, Workshop Computational Intelligence in Data Mining}, pages={29--37}, author={Wiswedel, Bernd and Berthold, Michael R.} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/5422"> <dc:creator>Berthold, Michael R.</dc:creator> <dc:format>application/pdf</dc:format> <dcterms:bibliographicCitation>First publ. in: IEEE International Conference on Data Mining, Workshop Computational Intelligence in Data Mining (ICDM 05, Houston, TX, USA), 2005, pp. 29-37</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:15Z</dc:date> <dc:rights>deposit-license</dc:rights> <dcterms:issued>2005</dcterms:issued> <dc:creator>Wiswedel, Bernd</dc:creator> <dc:contributor>Wiswedel, Bernd</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5422"/> <dcterms:title>Fuzzy Clustering in Parallel Universes with Noise Detection</dcterms:title> <dcterms:abstract xml:lang="eng">We present an extension of the fuzzy c-Means algorithm that operates on different feature spaces, so-called parallel universes, simultaneously and also incorporates noise detection. The method assigns membership values of patterns to different universes, which are then adopted throughout the training. This leads to better clustering results since patterns not contributing to clustering in a universe are (completely or partially) ignored. The method also uses an auxiliary universe to capture patterns that do not contribute to any of the clusters in the real universes and therefore likely represent noise. The outcome of the algorithm are clusters distributed over different parallel universes, each modeling a particular, potentially overlapping, subset of the data and a set of patterns detected as noise. One potential target application of the proposed method is biological data analysis where different descriptors for molecules are available but none of them by itself shows global satisfactory prediction results. In this paper we show how the fuzzy c-Means algorithm can be extended to operate in parallel universes and illustrate the usefulness of this method using results on artificial data sets.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:15Z</dcterms:available> <dc:contributor>Berthold, Michael R.</dc:contributor> <dcterms:rights rdf:resource="https://creativecommons.org/licenses/by-nc-nd/2.0/legalcode"/> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

Fuzzy_Clustering_in_Parallel_Universes_with_Noise_Detection.pdf 62

Das Dokument erscheint in:

deposit-license Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: deposit-license

KOPS Suche


Mein Benutzerkonto