Acoustic evaluation of behavioral states predicted from GPS tracking : a case study of a marine fishing bat
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Background: Multiple methods have been developed to infer behavioral states from animal movement data, but rarely has their accuracy been assessed from independent evidence, especially for location data sampled with high temporal resolution. Here we evaluate the performance of behavioral segmentation methods using acoustic recordings that monitor prey capture attempts.
Methods: We recorded GPS locations and ultrasonic audio during the foraging trips of 11 Mexican fish-eating bats, Myotis vivesi, using miniature bio-loggers. We then applied five different segmentation algorithms (k-means clustering, expectation-maximization and binary clustering, first-passage time, hidden Markov models, and correlated velocity change point analysis) to infer two behavioral states, foraging and commuting, from the GPS data. To evaluate the inference, we independently identified characteristic patterns of biosonar calls (“feeding buzzes”) that occur during foraging in the audio recordings. We then compared segmentation methods on how well they correctly identified the two behaviors and if their estimates of foraging movement parameters matched those for locations with buzzes.
Results: While the five methods differed in the median percentage of buzzes occurring during predicted foraging events, or true positive rate (44–75%), a two-state hidden Markov model had the highest median balanced accuracy (67%). Hidden Markov models and first-passage time predicted foraging flight speeds and turn angles similar to those measured at locations with feeding buzzes and did not differ in the number or duration of predicted foraging events.
Conclusion: The hidden Markov model method performed best at identifying fish-eating bat foraging segments; however, first-passage time was not significantly different and gave similar parameter estimates. This is the first attempt to evaluate segmentation methodologies in echolocating bats and provides an evaluation framework that can be used on other species.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HURME, Edward, Eliezer GURARIE, Stefan GREIF, L. Gerardo HERRERA M, José Juan FLORES-MARTÍNEZ, Gerald S. WILKINSON, Yossi YOVEL, 2019. Acoustic evaluation of behavioral states predicted from GPS tracking : a case study of a marine fishing bat. In: Movement ecology. BioMed Central. 2019, 7, 21. eISSN 2051-3933. Available under: doi: 10.1186/s40462-019-0163-7BibTex
@article{Hurme2019Acous-54207, year={2019}, doi={10.1186/s40462-019-0163-7}, title={Acoustic evaluation of behavioral states predicted from GPS tracking : a case study of a marine fishing bat}, volume={7}, journal={Movement ecology}, author={Hurme, Edward and Gurarie, Eliezer and Greif, Stefan and Herrera M, L. Gerardo and Flores-Martínez, José Juan and Wilkinson, Gerald S. and Yovel, Yossi}, note={Article Number: 21} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54207"> <dc:contributor>Herrera M, L. Gerardo</dc:contributor> <dc:contributor>Yovel, Yossi</dc:contributor> <dc:creator>Wilkinson, Gerald S.</dc:creator> <dcterms:issued>2019</dcterms:issued> <dcterms:title>Acoustic evaluation of behavioral states predicted from GPS tracking : a case study of a marine fishing bat</dcterms:title> <dcterms:abstract xml:lang="eng">Background: Multiple methods have been developed to infer behavioral states from animal movement data, but rarely has their accuracy been assessed from independent evidence, especially for location data sampled with high temporal resolution. Here we evaluate the performance of behavioral segmentation methods using acoustic recordings that monitor prey capture attempts.<br /><br />Methods: We recorded GPS locations and ultrasonic audio during the foraging trips of 11 Mexican fish-eating bats, Myotis vivesi, using miniature bio-loggers. We then applied five different segmentation algorithms (k-means clustering, expectation-maximization and binary clustering, first-passage time, hidden Markov models, and correlated velocity change point analysis) to infer two behavioral states, foraging and commuting, from the GPS data. To evaluate the inference, we independently identified characteristic patterns of biosonar calls (“feeding buzzes”) that occur during foraging in the audio recordings. We then compared segmentation methods on how well they correctly identified the two behaviors and if their estimates of foraging movement parameters matched those for locations with buzzes.<br /><br />Results: While the five methods differed in the median percentage of buzzes occurring during predicted foraging events, or true positive rate (44–75%), a two-state hidden Markov model had the highest median balanced accuracy (67%). Hidden Markov models and first-passage time predicted foraging flight speeds and turn angles similar to those measured at locations with feeding buzzes and did not differ in the number or duration of predicted foraging events.<br /><br />Conclusion: The hidden Markov model method performed best at identifying fish-eating bat foraging segments; however, first-passage time was not significantly different and gave similar parameter estimates. This is the first attempt to evaluate segmentation methodologies in echolocating bats and provides an evaluation framework that can be used on other species.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Hurme, Edward</dc:contributor> <dc:creator>Gurarie, Eliezer</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Herrera M, L. Gerardo</dc:creator> <dc:creator>Greif, Stefan</dc:creator> <dc:contributor>Wilkinson, Gerald S.</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54207"/> <dc:contributor>Gurarie, Eliezer</dc:contributor> <dc:creator>Flores-Martínez, José Juan</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-06T09:56:54Z</dcterms:available> <dc:contributor>Flores-Martínez, José Juan</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Greif, Stefan</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Yovel, Yossi</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54207/3/Hurme_2-flds4mqg1ovu9.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54207/3/Hurme_2-flds4mqg1ovu9.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-06T09:56:54Z</dc:date> <dc:creator>Hurme, Edward</dc:creator> </rdf:Description> </rdf:RDF>