Constructing Fuzzy Graphs from Examples

Cite This

Files in this item

Checksum: MD5:7d87234af79e95b437ac0bfb59bf7df8

BERTHOLD, Michael R., Klaus-Peter HUBER, 1999. Constructing Fuzzy Graphs from Examples. In: Intelligent Data Analysis. 3(1), pp. 37-53. Available under: doi: 10.1016/S1088-467X(99)00004-9

@article{Berthold1999Const-5413, title={Constructing Fuzzy Graphs from Examples}, year={1999}, doi={10.1016/S1088-467X(99)00004-9}, number={1}, volume={3}, journal={Intelligent Data Analysis}, pages={37--53}, author={Berthold, Michael R. and Huber, Klaus-Peter} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:available rdf:datatype="">2011-03-24T15:55:09Z</dcterms:available> <dcterms:issued>1999</dcterms:issued> <dspace:hasBitstream rdf:resource=""/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:format>application/pdf</dc:format> <dcterms:hasPart rdf:resource=""/> <dcterms:title>Constructing Fuzzy Graphs from Examples</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Methods to build function approximators from example data have gained considerable interest in the past. Especially methodologies that build models that allow an interpretation have attracted attention. Most existing algorithms, however, are either complicated to use or infeasible for high-dimensional problems. This article presents an efficient and easy to use algorithm to construct fuzzy graphs from example data. The resulting fuzzy graphs are based on locally independent fuzzy rules that operate solely on selected, important attributes. This enables the application of these fuzzy graphs also to problems in high dimensional spaces. Using illustrative examples and a real world data set it is demonstrated how the resulting fuzzy graphs offer quick insights into the structure of the example data, that is, the underlying model. The underlying algorithm is demonstrated using several Java applets, which can be found under "Electronic annexes" on</dcterms:abstract> <dcterms:rights rdf:resource=""/> <dc:creator>Berthold, Michael R.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <bibo:uri rdf:resource=""/> <dcterms:bibliographicCitation>First publ. in: Intelligent Data Analysis 3 (1999), 1, pp. 37-53</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:isPartOf rdf:resource=""/> <dc:date rdf:datatype="">2011-03-24T15:55:09Z</dc:date> <dc:creator>Huber, Klaus-Peter</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Huber, Klaus-Peter</dc:contributor> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

BeHu99_fuzzygraph_idaij.pdf 652

This item appears in the following Collection(s)

terms-of-use Except where otherwise noted, this item's license is described as terms-of-use

Search KOPS


My Account