KOPS - The Institutional Repository of the University of Konstanz

Efficient Stochastic Descent Methods for PDE-Constrained Optimization with Uncertain Coefficients

Efficient Stochastic Descent Methods for PDE-Constrained Optimization with Uncertain Coefficients

Cite This

Files in this item

Checksum: MD5:ec8498ffae91acc2caea8961ad93b1b6

FEINEIS, Calvin, 2021. Efficient Stochastic Descent Methods for PDE-Constrained Optimization with Uncertain Coefficients [Master thesis]. Konstanz: Universität Konstanz

@mastersthesis{Feineis2021Effic-53934, title={Efficient Stochastic Descent Methods for PDE-Constrained Optimization with Uncertain Coefficients}, year={2021}, address={Konstanz}, school={Universität Konstanz}, author={Feineis, Calvin} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/53934"> <dc:creator>Feineis, Calvin</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53934/3/Feineis_2-171a3bcqba3tk2.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-10T05:38:45Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-10T05:38:45Z</dcterms:available> <dcterms:title>Efficient Stochastic Descent Methods for PDE-Constrained Optimization with Uncertain Coefficients</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2021</dcterms:issued> <dcterms:abstract xml:lang="eng">In this thesis, we consider a convex, elliptic PDE-constrained optimal control problem that is subject to uncertainty. To solve this problem numerically we use three stochastic descent methods, namely the Stochastic Gradient method, the Stochastic Variance Reduced Gradient method and the Stochastic Adaptive Sampling method. We state theoretical convergence results for the three stochastic descent methods and present a setting in which we conduct numerical tests to compare the convergence behaviour and the CPU time. The numerical experiments show that a modification of the Stochastic Adaptive Sampling method in combination with the Barzilai-Borwein step size rule is the superior choice for the specific problem.</dcterms:abstract> <dc:contributor>Feineis, Calvin</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53934/3/Feineis_2-171a3bcqba3tk2.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53934"/> </rdf:Description> </rdf:RDF>

Downloads since Jun 10, 2021 (Information about access statistics)

Feineis_2-171a3bcqba3tk2.pdf 13

This item appears in the following Collection(s)

Search KOPS


Browse

My Account