KOPS - The Institutional Repository of the University of Konstanz

Machine learning of molecular electronic properties in chemical compound space

Machine learning of molecular electronic properties in chemical compound space

Cite This

Files in this item

Checksum: MD5:f98140ca3433a20472d12a9a2a47eafd

MONTAVON, Grégoire, Matthias RUPP, Vivekanand GOBRE, Alvaro VAZQUEZ-MAYAGOITIA, Katja HANSEN, Alexandre TKATCHENKO, Klaus-Robert MÜLLER, O. Anatole VON LILIENFELD, 2013. Machine learning of molecular electronic properties in chemical compound space. In: New Journal of Physics. Institute of Physics Publishing (IOP). 15(9), 095003. eISSN 1367-2630. Available under: doi: 10.1088/1367-2630/15/9/095003

@article{Montavon2013-09-04Machi-53899, title={Machine learning of molecular electronic properties in chemical compound space}, year={2013}, doi={10.1088/1367-2630/15/9/095003}, number={9}, volume={15}, journal={New Journal of Physics}, author={Montavon, Grégoire and Rupp, Matthias and Gobre, Vivekanand and Vazquez-Mayagoitia, Alvaro and Hansen, Katja and Tkatchenko, Alexandre and Müller, Klaus-Robert and von Lilienfeld, O. Anatole}, note={Article Number: 095003} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/53899"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-07T12:48:08Z</dc:date> <dc:creator>Gobre, Vivekanand</dc:creator> <dc:creator>von Lilienfeld, O. Anatole</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-07T12:48:08Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53899/3/Montavon_2-r9g26xv1vvo45.pdf"/> <dc:creator>Hansen, Katja</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Montavon, Grégoire</dc:contributor> <dc:creator>Montavon, Grégoire</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Müller, Klaus-Robert</dc:creator> <dc:contributor>Rupp, Matthias</dc:contributor> <dcterms:abstract xml:lang="eng">The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure–property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a 'quantum machine' is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost.</dcterms:abstract> <dc:rights>Attribution 3.0 Unported</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Tkatchenko, Alexandre</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:issued>2013-09-04</dcterms:issued> <dc:contributor>Müller, Klaus-Robert</dc:contributor> <dcterms:title>Machine learning of molecular electronic properties in chemical compound space</dcterms:title> <dc:creator>Rupp, Matthias</dc:creator> <dc:creator>Tkatchenko, Alexandre</dc:creator> <dc:contributor>Vazquez-Mayagoitia, Alvaro</dc:contributor> <dc:contributor>von Lilienfeld, O. Anatole</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/3.0/"/> <dc:language>eng</dc:language> <dc:contributor>Gobre, Vivekanand</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53899/3/Montavon_2-r9g26xv1vvo45.pdf"/> <dc:contributor>Hansen, Katja</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53899"/> <dc:creator>Vazquez-Mayagoitia, Alvaro</dc:creator> </rdf:Description> </rdf:RDF>

Downloads since Jun 7, 2021 (Information about access statistics)

Montavon_2-r9g26xv1vvo45.pdf 47

This item appears in the following Collection(s)

Attribution 3.0 Unported Except where otherwise noted, this item's license is described as Attribution 3.0 Unported

Search KOPS


Browse

My Account