Kernel smoothed prediction intervals for ARMA models

Cite This

Files in this item

Checksum: MD5:4c49f12ba737e1bea5ea6fc77a6f9e34

ABBERGER, Klaus, 2002. Kernel smoothed prediction intervals for ARMA models

@techreport{Abberger2002Kerne-537, series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie}, title={Kernel smoothed prediction intervals for ARMA models}, year={2002}, number={2002/02}, author={Abberger, Klaus} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/537"> <dcterms:title>Kernel smoothed prediction intervals for ARMA models</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/537/1/dp0202.pdf"/> <dcterms:abstract xml:lang="eng">The procedures of estimating prediction intervals for ARMA processes can be divided into model based methods and empirical methods. Model based methods require knowledge of the model and the underlying innovation dis- tribution. Empirical methods are based on the sample forecast errors. In this paper we apply nonparametric quantile regression to the empirical fore- cast errors using lead time as regressor. With this method there is no need for a distribution assumption. But for the data pattern in this case a double kernel method which allows smoothing in two directions is required. An estimation algorithm is presented and applied to some simulation examples.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Abberger, Klaus</dc:contributor> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:58Z</dc:date> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2002</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/537/1/dp0202.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:58Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:format>application/pdf</dc:format> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Abberger, Klaus</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/537"/> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

dp0202.pdf 144

This item appears in the following Collection(s)

Search KOPS


Browse

My Account