Nanoparticle adhesion and removal studied by pulsed laser irradiation

Thumbnail Image
Date
2006
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
High-Power Laser Ablation VI / Proc SPIE ; 6261 (2006). - 62610F
Abstract
The contactless removal of small particles from surfaces by irradiation with intense laser pulses dubbed laser cleaning has been used and studied for nearly two decades. Nevertheless, its applicability and the mechanisms involved are still under debate. Here we give first a brief overview on relevant processes, and then present measurements of the velocities of colloidal model particles after detachment under vacuum conditions. We also demonstrate a new Laser Cleaning approach, by which submicrometer particles are removed by laser irradiation of the rear side of the wafers. The particles are detached by an acoustic shock wave traveling to the wafer front side after laser ablation of the rear side. Not only is this promising approach capable of defect free surface cleaning, detailed studies of particle velocities versus laser fluence also allow insight into the different cleaning mechanisms involved. Furthermore, this technique could be applied to determine adhesion energies of particles in the future.
Summary in another language
Subject (DDC)
530 Physics
Keywords
laser cleaning,particle adhesion
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690LEIDERER, Paul, Michael OLAPINSKI, Mario MOSBACHER, Johannes BONEBERG, 2006. Nanoparticle adhesion and removal studied by pulsed laser irradiation. In: High-Power Laser Ablation VI / Proc SPIE. 6261, 62610F. Available under: doi: 10.1117/12.675552
BibTex
@article{Leiderer2006Nanop-5363,
  year={2006},
  doi={10.1117/12.675552},
  title={Nanoparticle adhesion and removal studied by pulsed laser irradiation},
  volume={6261},
  journal={High-Power Laser Ablation VI / Proc  SPIE},
  author={Leiderer, Paul and Olapinski, Michael and Mosbacher, Mario and Boneberg, Johannes},
  note={Article Number: 62610F}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5363">
    <dc:contributor>Leiderer, Paul</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:55:15Z</dc:date>
    <dcterms:bibliographicCitation>First publ. in: High-Power Laser Ablation VI / Proc. SPIE 2006, Vol. 6261, 62610F</dcterms:bibliographicCitation>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5363/1/Nanoparticle_adhesion_and_removal_studied_by_pulsed_laser_irradiation_2006.pdf"/>
    <dc:creator>Leiderer, Paul</dc:creator>
    <dc:contributor>Olapinski, Michael</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5363"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:55:15Z</dcterms:available>
    <dc:creator>Mosbacher, Mario</dc:creator>
    <dc:contributor>Boneberg, Johannes</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5363/1/Nanoparticle_adhesion_and_removal_studied_by_pulsed_laser_irradiation_2006.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Mosbacher, Mario</dc:contributor>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">The contactless removal of small particles from surfaces by irradiation with intense laser pulses   dubbed laser cleaning   has been used and studied for nearly two decades. Nevertheless,  its applicability and the mechanisms involved are still under debate. Here we give first a brief overview on relevant processes, and then present measurements of the velocities of colloidal model particles after detachment under vacuum conditions. We also demonstrate a new Laser Cleaning approach, by which submicrometer particles are removed by laser irradiation of the rear side of the wafers. The particles are detached by an acoustic shock wave traveling to the wafer front side after laser ablation of the rear side. Not only is this promising approach capable of defect free surface cleaning, detailed studies of particle velocities versus laser fluence also allow insight into the different cleaning mechanisms involved. Furthermore, this technique could be applied to determine adhesion energies of particles in the future.</dcterms:abstract>
    <dc:creator>Olapinski, Michael</dc:creator>
    <dc:creator>Boneberg, Johannes</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:issued>2006</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Nanoparticle adhesion and removal studied by pulsed laser irradiation</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed