KOPS - The Institutional Repository of the University of Konstanz

A Mesh-Free, Physics-Constrained Approach to solve Partial Differential Equations with a Deep Neural Network

A Mesh-Free, Physics-Constrained Approach to solve Partial Differential Equations with a Deep Neural Network

Cite This

Files in this item

Checksum: MD5:c1e10298a81e8823869c361ba889a258

KRESS, Kevin, 2020. A Mesh-Free, Physics-Constrained Approach to solve Partial Differential Equations with a Deep Neural Network [Bachelor thesis]. Konstanz: Universität Konstanz

@mastersthesis{Kress2020MeshF-53305, title={A Mesh-Free, Physics-Constrained Approach to solve Partial Differential Equations with a Deep Neural Network}, year={2020}, address={Konstanz}, school={Universität Konstanz}, author={Kress, Kevin} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/53305"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53305/3/Kress_2-1pqapp54g26sl0.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-30T08:27:27Z</dc:date> <dc:creator>Kress, Kevin</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53305"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Kress, Kevin</dc:contributor> <dcterms:title>A Mesh-Free, Physics-Constrained Approach to solve Partial Differential Equations with a Deep Neural Network</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-30T08:27:27Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53305/3/Kress_2-1pqapp54g26sl0.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">In this work, we utilized different approaches for solving partial differential equations with a deep neural network. The network respects the given physical laws of the equations by incorporating these constraints in the training process or in the network architecture. Specifically, a deep, feed-forward, and fully-connected neural network is used to approximate the partial differential equation, where the initial and boundary conditions are either hard or soft assigned. The resulting physics-informed surrogate model learns to satisfy the differential operator and the initial and boundary conditions and can be differentiated with respect to all input variables. The accuracy of the methods is demonstrated on multiple equations of different types and compared to either the exact or a finite element solution.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:issued>2020</dcterms:issued> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> </rdf:Description> </rdf:RDF>

Downloads since Mar 30, 2021 (Information about access statistics)

Kress_2-1pqapp54g26sl0.pdf 42

This item appears in the following Collection(s)

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search KOPS


Browse

My Account