The equations of thermoelasticity with time-dependent coefficients

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:30811c3e84698dc3422ce885724f1416

WEINMANN, Olaf, 2006. The equations of thermoelasticity with time-dependent coefficients

@unpublished{Weinmann2006equat-533, title={The equations of thermoelasticity with time-dependent coefficients}, year={2006}, author={Weinmann, Olaf} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/533"> <dc:contributor>Weinmann, Olaf</dc:contributor> <dc:format>application/pdf</dc:format> <dcterms:rights rdf:resource="https://creativecommons.org/licenses/by-nc-nd/2.0/legalcode"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:57Z</dc:date> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/533"/> <dcterms:issued>2006</dcterms:issued> <dcterms:abstract xml:lang="eng">We consider an inhomogeneous thermoelastic system with second sound in one space dimension where the coefficients are space- and time-dependent. For Dirichlet-Neumann type boundary conditions the global existence of smooth solutions is proved by using the theory of Kato. Then the asymptotic behavior of the solutions is discussed.</dcterms:abstract> <dc:rights>deposit-license</dc:rights> <dc:creator>Weinmann, Olaf</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:57Z</dcterms:available> <dcterms:title>The equations of thermoelasticity with time-dependent coefficients</dcterms:title> <dc:language>deu</dc:language> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

preprint_221.pdf 65

Das Dokument erscheint in:

deposit-license Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: deposit-license

KOPS Suche


Stöbern

Mein Benutzerkonto