Aggregation of Subclassifications : Methods, Tools and Experiments

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

DOELL, Christoph, Christian BORGELT, 2019. Aggregation of Subclassifications : Methods, Tools and Experiments. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). Xiamen, China, Dec 6, 2019 - Dec 9, 2019. In: 2019 IEEE Symposium Series on Computational Intelligence (SSCI). Piscataway, NJ:IEEE, pp. 3124-3131. ISBN 978-1-72812-485-8. Available under: doi: 10.1109/SSCI44817.2019.9002806

@inproceedings{Doell2019Aggre-53223, title={Aggregation of Subclassifications : Methods, Tools and Experiments}, year={2019}, doi={10.1109/SSCI44817.2019.9002806}, isbn={978-1-72812-485-8}, address={Piscataway, NJ}, publisher={IEEE}, booktitle={2019 IEEE Symposium Series on Computational Intelligence (SSCI)}, pages={3124--3131}, author={Doell, Christoph and Borgelt, Christian} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/53223"> <dc:creator>Doell, Christoph</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-22T16:08:09Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:issued>2019</dcterms:issued> <dc:creator>Borgelt, Christian</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Aggregation methods have been studied extensively from a mathematical, theoretical point of view. In this work, however, we focus on a more practical aspect: subclassifications. Given class predictions for several sub-objects of a single instance, we systematically investigate the performance of different aggregation methods. To this end, we simulate data for various data distributions. Thus we ensure that we know the ground truth for the evaluation, which would be impossible for real world data. Our source code is publicly available and can be extended to explore other aggregation methods and other data distributions.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53223"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-22T16:08:09Z</dc:date> <dc:language>eng</dc:language> <dcterms:title>Aggregation of Subclassifications : Methods, Tools and Experiments</dcterms:title> <dc:contributor>Borgelt, Christian</dc:contributor> <dc:contributor>Doell, Christoph</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account