Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können am Montag, 6.2. und Dienstag, 7.2. keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted on Monday, Feb. 6 and Tuesday, Feb. 7.)
Type of Publication: | Journal article |
Publication status: | Published |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-2-w917n1w06ydu7 |
Author: | Cakmak, Eren; Schlegel, Udo; Jäckle, Dominik; Keim, Daniel A.; Schreck, Tobias |
Year of publication: | 2021 |
Published in: | IEEE Transactions on Visualization and Computer Graphics (T-VCG) ; 27 (2021), 2. - pp. 517-527. - IEEE. - ISSN 1077-2626. - eISSN 1941-0506 |
Pubmed ID: | 33048714 |
DOI (citable link): | https://dx.doi.org/10.1109/TVCG.2020.3030398 |
Summary: |
The overview-driven visual analysis of large-scale dynamic graphs poses a major challenge. We propose Multiscale Snapshots, a visual analytics approach to analyze temporal summaries of dynamic graphs at multiple temporal scales. First, we recursively generate temporal summaries to abstract overlapping sequences of graphs into compact snapshots. Second, we apply graph embeddings to the snapshots to learn low-dimensional representations of each sequence of graphs to speed up specific analytical tasks (e.g., similarity search). Third, we visualize the evolving data from a coarse to fine-granular snapshots to semi-automatically analyze temporal states, trends, and outliers. The approach enables us to discover similar temporal summaries (e.g., reoccurring states), reduces the temporal data to speed up automatic analysis, and to explore both structural and temporal properties of a dynamic graph. We demonstrate the usefulness of our approach by a quantitative evaluation and the application to a real-world dataset.
|
Subject (DDC): | 004 Computer Science |
Keywords: | Dynamic Graph, Dynamic Network, Unsupervised Graph Learning, Graph Embedding, Multiscale Visualization |
Link to License: | In Copyright |
Bibliography of Konstanz: | Yes |
Refereed: | Yes |
CAKMAK, Eren, Udo SCHLEGEL, Dominik JÄCKLE, Daniel A. KEIM, Tobias SCHRECK, 2021. Multiscale Snapshots : Visual Analysis of Temporal Summaries in Dynamic Graphs. In: IEEE Transactions on Visualization and Computer Graphics (T-VCG). IEEE. 27(2), pp. 517-527. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2020.3030398
@article{Cakmak2021-02Multi-53077, title={Multiscale Snapshots : Visual Analysis of Temporal Summaries in Dynamic Graphs}, year={2021}, doi={10.1109/TVCG.2020.3030398}, number={2}, volume={27}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics (T-VCG)}, pages={517--527}, author={Cakmak, Eren and Schlegel, Udo and Jäckle, Dominik and Keim, Daniel A. and Schreck, Tobias} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/53077"> <dcterms:title>Multiscale Snapshots : Visual Analysis of Temporal Summaries in Dynamic Graphs</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53077/1/Cakmak_2-w917n1w06ydu7.pdf"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T09:04:01Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dc:creator>Schreck, Tobias</dc:creator> <dcterms:abstract xml:lang="eng">The overview-driven visual analysis of large-scale dynamic graphs poses a major challenge. We propose Multiscale Snapshots, a visual analytics approach to analyze temporal summaries of dynamic graphs at multiple temporal scales. First, we recursively generate temporal summaries to abstract overlapping sequences of graphs into compact snapshots. Second, we apply graph embeddings to the snapshots to learn low-dimensional representations of each sequence of graphs to speed up specific analytical tasks (e.g., similarity search). Third, we visualize the evolving data from a coarse to fine-granular snapshots to semi-automatically analyze temporal states, trends, and outliers. The approach enables us to discover similar temporal summaries (e.g., reoccurring states), reduces the temporal data to speed up automatic analysis, and to explore both structural and temporal properties of a dynamic graph. We demonstrate the usefulness of our approach by a quantitative evaluation and the application to a real-world dataset.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T09:04:01Z</dc:date> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:issued>2021-02</dcterms:issued> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:contributor>Cakmak, Eren</dc:contributor> <dc:creator>Cakmak, Eren</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53077"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Jäckle, Dominik</dc:contributor> <dc:creator>Schlegel, Udo</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Schlegel, Udo</dc:contributor> <dc:creator>Jäckle, Dominik</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53077/1/Cakmak_2-w917n1w06ydu7.pdf"/> </rdf:Description> </rdf:RDF>
Cakmak_2-w917n1w06ydu7.pdf | 148 |