Multiscale Snapshots : Visual Analysis of Temporal Summaries in Dynamic Graphs

Lade...
Vorschaubild
Dateien
Cakmak_2-w917n1w06ydu7.pdf
Cakmak_2-w917n1w06ydu7.pdfGröße: 3.71 MBDownloads: 164
Datum
2021
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IEEE Transactions on Visualization and Computer Graphics (T-VCG). IEEE. 2021, 27(2), pp. 517-527. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2020.3030398
Zusammenfassung

The overview-driven visual analysis of large-scale dynamic graphs poses a major challenge. We propose Multiscale Snapshots, a visual analytics approach to analyze temporal summaries of dynamic graphs at multiple temporal scales. First, we recursively generate temporal summaries to abstract overlapping sequences of graphs into compact snapshots. Second, we apply graph embeddings to the snapshots to learn low-dimensional representations of each sequence of graphs to speed up specific analytical tasks (e.g., similarity search). Third, we visualize the evolving data from a coarse to fine-granular snapshots to semi-automatically analyze temporal states, trends, and outliers. The approach enables us to discover similar temporal summaries (e.g., reoccurring states), reduces the temporal data to speed up automatic analysis, and to explore both structural and temporal properties of a dynamic graph. We demonstrate the usefulness of our approach by a quantitative evaluation and the application to a real-world dataset.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Dynamic Graph, Dynamic Network, Unsupervised Graph Learning, Graph Embedding, Multiscale Visualization
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690CAKMAK, Eren, Udo SCHLEGEL, Dominik JÄCKLE, Daniel A. KEIM, Tobias SCHRECK, 2021. Multiscale Snapshots : Visual Analysis of Temporal Summaries in Dynamic Graphs. In: IEEE Transactions on Visualization and Computer Graphics (T-VCG). IEEE. 2021, 27(2), pp. 517-527. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2020.3030398
BibTex
@article{Cakmak2021-02Multi-53077,
  year={2021},
  doi={10.1109/TVCG.2020.3030398},
  title={Multiscale Snapshots : Visual Analysis of Temporal Summaries in Dynamic Graphs},
  number={2},
  volume={27},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics (T-VCG)},
  pages={517--527},
  author={Cakmak, Eren and Schlegel, Udo and Jäckle, Dominik and Keim, Daniel A. and Schreck, Tobias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53077">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53077/1/Cakmak_2-w917n1w06ydu7.pdf"/>
    <dcterms:issued>2021-02</dcterms:issued>
    <dc:creator>Jäckle, Dominik</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Cakmak, Eren</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53077/1/Cakmak_2-w917n1w06ydu7.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T09:04:01Z</dc:date>
    <dcterms:title>Multiscale Snapshots : Visual Analysis of Temporal Summaries in Dynamic Graphs</dcterms:title>
    <dc:creator>Cakmak, Eren</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T09:04:01Z</dcterms:available>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Schlegel, Udo</dc:creator>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53077"/>
    <dcterms:abstract xml:lang="eng">The overview-driven visual analysis of large-scale dynamic graphs poses a major challenge. We propose Multiscale Snapshots, a visual analytics approach to analyze temporal summaries of dynamic graphs at multiple temporal scales. First, we recursively generate temporal summaries to abstract overlapping sequences of graphs into compact snapshots. Second, we apply graph embeddings to the snapshots to learn low-dimensional representations of each sequence of graphs to speed up specific analytical tasks (e.g., similarity search). Third, we visualize the evolving data from a coarse to fine-granular snapshots to semi-automatically analyze temporal states, trends, and outliers. The approach enables us to discover similar temporal summaries (e.g., reoccurring states), reduces the temporal data to speed up automatic analysis, and to explore both structural and temporal properties of a dynamic graph. We demonstrate the usefulness of our approach by a quantitative evaluation and the application to a real-world dataset.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Schlegel, Udo</dc:contributor>
    <dc:contributor>Jäckle, Dominik</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja