KOPS - The Institutional Repository of the University of Konstanz

KonIQ-10k : An Ecologically Valid Database for Deep Learning of Blind Image Quality Assessment

KonIQ-10k : An Ecologically Valid Database for Deep Learning of Blind Image Quality Assessment

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

HOSU, Vlad, Hanhe LIN, Tamas SZIRANYI, Dietmar SAUPE, 2020. KonIQ-10k : An Ecologically Valid Database for Deep Learning of Blind Image Quality Assessment. In: IEEE Transactions on Image Processing. IEEE. 29, pp. 4041-4056. ISSN 1057-7149. eISSN 1941-0042. Available under: doi: 10.1109/TIP.2020.2967829

@article{Hosu2020-01-24KonIQ-53065, title={KonIQ-10k : An Ecologically Valid Database for Deep Learning of Blind Image Quality Assessment}, year={2020}, doi={10.1109/TIP.2020.2967829}, volume={29}, issn={1057-7149}, journal={IEEE Transactions on Image Processing}, pages={4041--4056}, author={Hosu, Vlad and Lin, Hanhe and Sziranyi, Tamas and Saupe, Dietmar} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/53065"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-03T10:36:55Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-03T10:36:55Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Saupe, Dietmar</dc:creator> <dc:contributor>Sziranyi, Tamas</dc:contributor> <dcterms:abstract xml:lang="eng">Deep learning methods for image quality assessment (IQA) are limited due to the small size of existing datasets. Extensive datasets require substantial resources both for generating publishable content and annotating it accurately. We present a systematic and scalable approach to creating KonIQ-10k, the largest IQA dataset to date, consisting of 10,073 quality scored images. It is the first in-the-wild database aiming for ecological validity, concerning the authenticity of distortions, the diversity of content, and quality-related indicators. Through the use of crowdsourcing, we obtained 1.2 million reliable quality ratings from 1,459 crowd workers, paving the way for more general IQA models. We propose a novel, deep learning model (KonCept512), to show an excellent generalization beyond the test set (0.921 SROCC), to the current state-of-the-art database LIVE-in-the-Wild (0.825 SROCC). The model derives its core performance from the InceptionResNet architecture, being trained at a higher resolution than previous models (512 × 384 ). Correlation analysis shows that KonCept512 performs similar to having 9 subjective scores for each test image.</dcterms:abstract> <dc:language>eng</dc:language> <dc:contributor>Lin, Hanhe</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53065"/> <dc:contributor>Hosu, Vlad</dc:contributor> <dc:creator>Lin, Hanhe</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:title>KonIQ-10k : An Ecologically Valid Database for Deep Learning of Blind Image Quality Assessment</dcterms:title> <dcterms:issued>2020-01-24</dcterms:issued> <dc:creator>Hosu, Vlad</dc:creator> <dc:creator>Sziranyi, Tamas</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Saupe, Dietmar</dc:contributor> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account