ROM-based inexact subdivision methods for PDE-constrained multiobjective optimization
ROM-based inexact subdivision methods for PDE-constrained multiobjective optimization
Datum
2021
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Mathematical and Computational Applications ; 26 (2021), 2. - 32. - MDPI. - ISSN 2297-8747. - eISSN 1300-686X
Zusammenfassung
The goal in multiobjective optimization is to determine the so-called Pareto set. Our optimization problem is governed by a parameter dependent semilinear elliptic partial differential equation (PDE). To solve it, we use a gradient based set-oriented numerical method. The numerical solution of the PDE by standard discretization methods usually leads to high computational effort. To overcome this difficulty, reduced-order modeling (ROM) is developed utilizing the reduced basis method. These model simplifications cause inexactness in the gradients. For that reason, an additional descent condition is proposed. Applying a modified subdivision algorithm, numerical experiments illustrate the efficiency of our solution approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
multiobjective optimization; PDE-constrained optimization; reduced-order modeling; set-oriented methods; inexact optimization
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690
BANHOLZER, Stefan, Bennet GEBKEN, Lena REICHLE, Stefan VOLKWEIN, 2021. ROM-based inexact subdivision methods for PDE-constrained multiobjective optimization. In: Mathematical and Computational Applications. MDPI. 26(2), 32. ISSN 2297-8747. eISSN 1300-686X. Available under: doi: 10.3390/mca26020032BibTex
@article{Banholzer2021ROMba-52995.2, year={2021}, doi={10.3390/mca26020032}, title={ROM-based inexact subdivision methods for PDE-constrained multiobjective optimization}, number={2}, volume={26}, issn={2297-8747}, journal={Mathematical and Computational Applications}, author={Banholzer, Stefan and Gebken, Bennet and Reichle, Lena and Volkwein, Stefan}, note={Article Number: 32} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52995.2"> <dc:contributor>Volkwein, Stefan</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-05T11:09:03Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52995.2/1/Banholzer_2-1tlwgrxeiaqr10.pdf"/> <dcterms:title>ROM-based inexact subdivision methods for PDE-constrained multiobjective optimization</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52995.2/1/Banholzer_2-1tlwgrxeiaqr10.pdf"/> <dc:language>eng</dc:language> <dc:contributor>Reichle, Lena</dc:contributor> <dc:creator>Banholzer, Stefan</dc:creator> <dc:creator>Reichle, Lena</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52995.2"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Banholzer, Stefan</dc:contributor> <dc:contributor>Gebken, Bennet</dc:contributor> <dcterms:issued>2021</dcterms:issued> <dc:creator>Gebken, Bennet</dc:creator> <dcterms:abstract xml:lang="eng">The goal in multiobjective optimization is to determine the so-called Pareto set. Our optimization problem is governed by a parameter dependent semilinear elliptic partial differential equation (PDE). To solve it, we use a gradient based set-oriented numerical method. The numerical solution of the PDE by standard discretization methods usually leads to high computational effort. To overcome this difficulty, reduced-order modeling (ROM) is developed utilizing the reduced basis method. These model simplifications cause inexactness in the gradients. For that reason, an additional descent condition is proposed. Applying a modified subdivision algorithm, numerical experiments illustrate the efficiency of our solution approach.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-05T11:09:03Z</dc:date> <dc:creator>Volkwein, Stefan</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt