KOPS - The Institutional Repository of the University of Konstanz

DataShiftExplorer : Visualizing and Comparing Change in Multidimensional Data for Supervised Learning

DataShiftExplorer : Visualizing and Comparing Change in Multidimensional Data for Supervised Learning

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

SCHNEIDER, Bruno, Daniel A. KEIM, Mennatallah EL-ASSADY, 2020. DataShiftExplorer : Visualizing and Comparing Change in Multidimensional Data for Supervised Learning. 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2020. Valletta, Malta, Feb 27, 2020 - Feb 29, 2020. In: KERREN, Andreas, ed. and others. VISIGRAPP 2020 : proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications : Valletta, Malta, February 27-29, 2020 ; Volume 3: IVAPP. Sétubal:SCITEPRESS, pp. 141-148. ISBN 9789897584022. Available under: doi: 10.5220/0008940801410148

@inproceedings{Schneider2020-02-27DataS-52868, title={DataShiftExplorer : Visualizing and Comparing Change in Multidimensional Data for Supervised Learning}, year={2020}, doi={10.5220/0008940801410148}, isbn={9789897584022}, address={Sétubal}, publisher={SCITEPRESS}, booktitle={VISIGRAPP 2020 : proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications : Valletta, Malta, February 27-29, 2020 ; Volume 3: IVAPP}, pages={141--148}, editor={Kerren, Andreas}, author={Schneider, Bruno and Keim, Daniel A. and El-Assady, Mennatallah} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/52868"> <dc:creator>Keim, Daniel A.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-17T09:45:10Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Schneider, Bruno</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-17T09:45:10Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dc:creator>El-Assady, Mennatallah</dc:creator> <dcterms:title>DataShiftExplorer : Visualizing and Comparing Change in Multidimensional Data for Supervised Learning</dcterms:title> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Schneider, Bruno</dc:creator> <dcterms:issued>2020-02-27</dcterms:issued> <dcterms:abstract xml:lang="eng">In supervised learning, to ensure the model's validity, it is essential to identify dataset shifts, i.e., when the data distribution changes from the one the model encountered at the time of training. To detect such changes, a comparative analysis of the multidimensional data distributions of the training data and new, unseen datasets is required. In this paper, we span the design space of visualizations for multidimensional comparative data analytics. Based on this design space, we present DataShiftExplorer, a technique tailored to identify and analyze the change in multidimensional data distributions. Throughout examples, we show how DataShiftExplorer facilitates the identification and analysis of data changes, supporting supervised learning.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52868"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account