Type of Publication: | Journal article |
Publication status: | Published |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-2-n245l7gr86n20 |
Author: | Michalek, Mateusz; Perepechko, Alexander; Süß, Hendrik |
Year of publication: | 2018 |
Published in: | Mathematische Zeitschrift ; 290 (2018), 3-4. - pp. 1457-1478. - Springer. - ISSN 0025-5874. - eISSN 1432-1823 |
DOI (citable link): | https://dx.doi.org/10.1007/s00209-018-2069-2 |
Summary: |
We provide a new criterion for flexibility of affine cones over varieties covered by flexible affine varieties.We apply this criterion to prove flexibility of affine cones over secant varieties of Segre–Veronese embeddings and over certain Fano threefolds. We further prove flexibility of total coordinate spaces of Cox rings of del Pezzo surfaces.
|
Subject (DDC): | 510 Mathematics |
Keywords: | Automorphism group, Transitivity, Flexibility, Affine cone, Cox ring, Segre–Veronese embedding, Secant variety, Del Pezzo surface |
Link to License: | Attribution 4.0 International |
Refereed: | Yes |
MICHALEK, Mateusz, Alexander PEREPECHKO, Hendrik SÜSS, 2018. Flexible affine cones and flexible coverings. In: Mathematische Zeitschrift. Springer. 290(3-4), pp. 1457-1478. ISSN 0025-5874. eISSN 1432-1823. Available under: doi: 10.1007/s00209-018-2069-2
@article{Michalek2018-12Flexi-52538, title={Flexible affine cones and flexible coverings}, year={2018}, doi={10.1007/s00209-018-2069-2}, number={3-4}, volume={290}, issn={0025-5874}, journal={Mathematische Zeitschrift}, pages={1457--1478}, author={Michalek, Mateusz and Perepechko, Alexander and Süß, Hendrik} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/52538"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52538"/> <dc:creator>Süß, Hendrik</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:title>Flexible affine cones and flexible coverings</dcterms:title> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2018-12</dcterms:issued> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Perepechko, Alexander</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52538/1/Michalek_2-n245l7gr86n20.pdf"/> <dc:creator>Michalek, Mateusz</dc:creator> <dcterms:abstract xml:lang="eng">We provide a new criterion for flexibility of affine cones over varieties covered by flexible affine varieties.We apply this criterion to prove flexibility of affine cones over secant varieties of Segre–Veronese embeddings and over certain Fano threefolds. We further prove flexibility of total coordinate spaces of Cox rings of del Pezzo surfaces.</dcterms:abstract> <dc:contributor>Süß, Hendrik</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52538/1/Michalek_2-n245l7gr86n20.pdf"/> <dc:contributor>Perepechko, Alexander</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-22T12:03:25Z</dc:date> <dc:contributor>Michalek, Mateusz</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-22T12:03:25Z</dcterms:available> </rdf:Description> </rdf:RDF>
Michalek_2-n245l7gr86n20.pdf | 47 |