Inhomogeneous symbols, the Newton polygon, and maximal Lp-regularity


Dateien zu dieser Ressource

Prüfsumme: MD5:7fa30324866b940110d481ed6e5903db

DENK, Robert, Jürgen SAAL, Jörg SEILER, 2008. Inhomogeneous symbols, the Newton polygon, and maximal Lp-regularity

@techreport{Denk2008Inhom-524, series={Konstanzer Schriften in Mathematik und Informatik}, title={Inhomogeneous symbols, the Newton polygon, and maximal Lp-regularity}, year={2008}, number={244}, author={Denk, Robert and Saal, Jürgen and Seiler, Jörg} }

<rdf:RDF xmlns:rdf="" xmlns:bibo="" xmlns:dc="" xmlns:dcterms="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:abstract xml:lang="eng">We prove a maximal regularity result for operators corresponding to rotation invariant (in space) symbols which are inhomogeneous in space and time. Symbols of this type frequently arise in the treatment of half-space models for (free) boundary value problems. The result is obtained by extending the Newton polygon approach to variables living in complex sectors and combining it with abstract results on functional calculus and R-bounded operator families. As an application we derive maximal regularity for the linearized Stefan problem with Gibbs-Thomson correction.</dcterms:abstract> <dc:creator>Denk, Robert</dc:creator> <dc:date rdf:datatype="">2011-03-22T17:44:55Z</dc:date> <dcterms:title>Inhomogeneous symbols, the Newton polygon, and maximal Lp-regularity</dcterms:title> <dc:contributor>Denk, Robert</dc:contributor> <dc:creator>Seiler, Jörg</dc:creator> <dcterms:available rdf:datatype="">2011-03-22T17:44:55Z</dcterms:available> <dcterms:rights rdf:resource=""/> <dc:language>eng</dc:language> <dcterms:issued>2008</dcterms:issued> <dc:creator>Saal, Jürgen</dc:creator> <bibo:uri rdf:resource=""/> <dc:contributor>Seiler, Jörg</dc:contributor> <dc:contributor>Saal, Jürgen</dc:contributor> <dc:rights>deposit-license</dc:rights> <dc:format>application/pdf</dc:format> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

research_paper_244.pdf 133

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto