Type of Publication: | Working Paper/Technical Report |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-50540 |
Author: | Denk, Robert; Saal, Jürgen; Seiler, Jörg |
Year of publication: | 2008 |
Series: | Konstanzer Schriften in Mathematik und Informatik ; 244 |
Summary: |
We prove a maximal regularity result for operators corresponding to rotation invariant (in space) symbols which are inhomogeneous in space and time. Symbols of this type frequently arise in the treatment of half-space models for (free) boundary value problems. The result is obtained by extending the Newton polygon approach to variables living in complex sectors and combining it with abstract results on functional calculus and R-bounded operator families. As an application we derive maximal regularity for the linearized Stefan problem with Gibbs-Thomson correction.
|
MSC Classification: | 42B15; 35M10 |
Subject (DDC): | 510 Mathematics |
Controlled Keywords (GND): | System von partiellen Differentialgleichungen |
Keywords: | Inhomogene Symbole, Newton Polygon, Maximale Regularität, Inhomogeneous Symbols, Newton Polygon, Maximal regularity |
Link to License: | In Copyright |
Bibliography of Konstanz: | Yes |
DENK, Robert, Jürgen SAAL, Jörg SEILER, 2008. Inhomogeneous symbols, the Newton polygon, and maximal Lp-regularity
@techreport{Denk2008Inhom-524, series={Konstanzer Schriften in Mathematik und Informatik}, title={Inhomogeneous symbols, the Newton polygon, and maximal Lp-regularity}, year={2008}, number={244}, author={Denk, Robert and Saal, Jürgen and Seiler, Jörg} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/524"> <dcterms:abstract xml:lang="eng">We prove a maximal regularity result for operators corresponding to rotation invariant (in space) symbols which are inhomogeneous in space and time. Symbols of this type frequently arise in the treatment of half-space models for (free) boundary value problems. The result is obtained by extending the Newton polygon approach to variables living in complex sectors and combining it with abstract results on functional calculus and R-bounded operator families. As an application we derive maximal regularity for the linearized Stefan problem with Gibbs-Thomson correction.</dcterms:abstract> <dc:creator>Denk, Robert</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:55Z</dc:date> <dcterms:title>Inhomogeneous symbols, the Newton polygon, and maximal Lp-regularity</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Denk, Robert</dc:contributor> <dc:creator>Seiler, Jörg</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:55Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Saal, Jürgen</dc:creator> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/524/1/research_paper_244.pdf"/> <dcterms:issued>2008</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/524/1/research_paper_244.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/524"/> <dc:contributor>Seiler, Jörg</dc:contributor> <dc:contributor>Saal, Jürgen</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:format>application/pdf</dc:format> </rdf:Description> </rdf:RDF>
research_paper_244.pdf | 252 |