Type of Publication: | Journal article |
Publication status: | Published |
Author: | Freistühler, Heinrich; Pellhammer, Valentin |
Year of publication: | 2020 |
Published in: | SIAM Journal on Mathematical Analysis ; 52 (2020), 6. - pp. 5658-5674. - Society for Industrial and Applied Mathematics (SIAM). - ISSN 0036-1410. - eISSN 1095-7154 |
DOI (citable link): | https://dx.doi.org/10.1137/20M1323047 |
Summary: |
This paper studies a nonstrictly hyperbolic system of conservation laws in one space dimension which has been proposed in the literature as mathematically natural and as a model of magnetohydrodynamic (MHD) turbulence. It is shown that the associated Riemann problem possesses a one-parameter family of different solution operators, each of which corresponds to a different ratio of two dissipation parameters that in the MHD interpretation correspond to coefficients of fluid viscosity and electrical resistivity.
|
Subject (DDC): | 510 Mathematics |
Bibliography of Konstanz: | Yes |
Refereed: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
FREISTÜHLER, Heinrich, Valentin PELLHAMMER, 2020. Dependence on the Background Viscosity of Solutions to a Prototypical NonStrictly Hyperbolic System of Conservation Laws. In: SIAM Journal on Mathematical Analysis. Society for Industrial and Applied Mathematics (SIAM). 52(6), pp. 5658-5674. ISSN 0036-1410. eISSN 1095-7154. Available under: doi: 10.1137/20M1323047
@article{Freistuhler2020Depen-52376, title={Dependence on the Background Viscosity of Solutions to a Prototypical NonStrictly Hyperbolic System of Conservation Laws}, year={2020}, doi={10.1137/20M1323047}, number={6}, volume={52}, issn={0036-1410}, journal={SIAM Journal on Mathematical Analysis}, pages={5658--5674}, author={Freistühler, Heinrich and Pellhammer, Valentin} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/52376"> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Pellhammer, Valentin</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-13T10:38:17Z</dc:date> <dcterms:title>Dependence on the Background Viscosity of Solutions to a Prototypical NonStrictly Hyperbolic System of Conservation Laws</dcterms:title> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-13T10:38:17Z</dcterms:available> <dcterms:abstract xml:lang="eng">This paper studies a nonstrictly hyperbolic system of conservation laws in one space dimension which has been proposed in the literature as mathematically natural and as a model of magnetohydrodynamic (MHD) turbulence. It is shown that the associated Riemann problem possesses a one-parameter family of different solution operators, each of which corresponds to a different ratio of two dissipation parameters that in the MHD interpretation correspond to coefficients of fluid viscosity and electrical resistivity.</dcterms:abstract> <dcterms:issued>2020</dcterms:issued> <dc:creator>Freistühler, Heinrich</dc:creator> <dc:contributor>Pellhammer, Valentin</dc:contributor> <dc:contributor>Freistühler, Heinrich</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52376"/> </rdf:Description> </rdf:RDF>