Bounds for the Range of a Complex Polynomial over a Rectangular Region

Thumbnail Image
Date
2020
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik; 396
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Working Paper/Technical Report
Publication status
Accepted
Published in
Abstract
Matrix methods for the computation of bounds for the range of a complex polynomial and its modulus over a rectangular region in the complex plane are presented. The approach relies on the expansion of the given polynomial into Bernstein polynomials. The results are extended to multivariate complex polynomials and rational functions.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Complex interval. complex polynomial, enclosure of the range, Bernstein polynomial, multivariate complex polynomial, multivariate rational function
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690TITI, Jihad, Jürgen GARLOFF, 2020. Bounds for the Range of a Complex Polynomial over a Rectangular Region
BibTex
@techreport{Titi2020Bound-52291,
  year={2020},
  series={Konstanzer Schriften in Mathematik},
  title={Bounds for the Range of a Complex Polynomial over a Rectangular Region},
  number={396},
  author={Titi, Jihad and Garloff, Jürgen},
  note={Wird erscheinen in: Journal of Computational and Applied Mathematics ; 2021}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52291">
    <dcterms:title>Bounds for the Range of a Complex Polynomial over a Rectangular Region</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">Matrix methods for the computation of bounds for the range of a complex polynomial and its modulus over a rectangular region in the complex plane are presented. The approach relies on the expansion of the given polynomial into Bernstein polynomials. The results are  extended to multivariate complex polynomials and rational functions.</dcterms:abstract>
    <dc:contributor>Titi, Jihad</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Garloff, Jürgen</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Garloff, Jürgen</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52291/3/Titi_2-2jh12ihlpabd2.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Titi, Jihad</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2020</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52291"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52291/3/Titi_2-2jh12ihlpabd2.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-05T12:38:01Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-05T12:38:01Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Wird erscheinen in: Journal of Computational and Applied Mathematics ; 2021
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed