KOPS - The Institutional Repository of the University of Konstanz

On the Geometry of Border Rank Decompositions for Matrix Multiplication and Other Tensors with Symmetry

On the Geometry of Border Rank Decompositions for Matrix Multiplication and Other Tensors with Symmetry

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

LANDSBERG, Joseph M., Mateusz MICHALEK, 2017. On the Geometry of Border Rank Decompositions for Matrix Multiplication and Other Tensors with Symmetry. In: SIAM Journal on Applied Algebra and Geometry. Society for Industrial and Applied Mathematics (SIAM). 1(1), pp. 2-19. eISSN 2470-6566. Available under: doi: 10.1137/16M1067457

@article{Landsberg2017Geome-52210, title={On the Geometry of Border Rank Decompositions for Matrix Multiplication and Other Tensors with Symmetry}, year={2017}, doi={10.1137/16M1067457}, number={1}, volume={1}, journal={SIAM Journal on Applied Algebra and Geometry}, pages={2--19}, author={Landsberg, Joseph M. and Michalek, Mateusz} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/52210"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-21T13:40:28Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:contributor>Michalek, Mateusz</dc:contributor> <dcterms:abstract xml:lang="eng">We present a new approach to study tensors with symmetry, via local algebraic geometry. Border rank decompositions for such tensors---in particular, matrix multiplication and the determinant polynomial---come in families. We prove that these families include representatives with normal forms. These normal forms will be useful to prove lower complexity bounds and possibly even to determine new decompositions. We derive a border rank version of the substitution method used in proving lower bounds for tensor rank. Applying these methods, we improve the lower bound on the border rank of matrix multiplication. We also point out difficulties that will be formidable obstacles to future progress on lower complexity bounds for tensors because of the “wild” structure of the Hilbert scheme of points.</dcterms:abstract> <dc:contributor>Landsberg, Joseph M.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-21T13:40:28Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52210"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dc:creator>Michalek, Mateusz</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Landsberg, Joseph M.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>On the Geometry of Border Rank Decompositions for Matrix Multiplication and Other Tensors with Symmetry</dcterms:title> <dcterms:issued>2017</dcterms:issued> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account