Type of Publication: | Contribution to a conference collection |
Publication status: | Published |
Author: | Spinde, Timo; Hamborg, Felix; Gipp, Bela |
Year of publication: | 2020 |
Conference: | JCDL '20, Aug 1, 2020 - Aug 5, 2020, China (Virtual Event) |
Published in: | Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020 (JCDL '20) / Huang, Ruhua et al. (ed.). - New York : ACM, 2020. - pp. 505-506. - ISBN 978-1-4503-7585-6 |
DOI (citable link): | https://dx.doi.org/10.1145/3383583.3398585 |
Summary: |
Media bias may often affect individuals' opinions on reported topics. Many existing methods that aim to identify such bias forms employ individual, specialized techniques and focus only on English texts. We propose to combine the state-of-the-art in order to further improve the performance in bias identification. Our prototype consists of three analysis components to identify media bias words in German news articles. We use an IDF-based component, a component utilizing a topic-dependent bias dictionary created using word embeddings, and an extensive dictionary of German emotional terms compiled from multiple sources. Finally, we discuss two not yet implemented analysis components that use machine learning and network analysis to identify media bias. All dictionary-based analysis components are experimentally extended with the use of general word embeddings. We also show the results of a user study.
|
Subject (DDC): | 004 Computer Science |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
SPINDE, Timo, Felix HAMBORG, Bela GIPP, 2020. An Integrated Approach to Detect Media Bias in German News Articles. JCDL '20. China (Virtual Event), Aug 1, 2020 - Aug 5, 2020. In: HUANG, Ruhua, ed. and others. Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020 (JCDL '20). New York:ACM, pp. 505-506. ISBN 978-1-4503-7585-6. Available under: doi: 10.1145/3383583.3398585
@inproceedings{Spinde2020Integ-51921, title={An Integrated Approach to Detect Media Bias in German News Articles}, year={2020}, doi={10.1145/3383583.3398585}, isbn={978-1-4503-7585-6}, address={New York}, publisher={ACM}, booktitle={Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020 (JCDL '20)}, pages={505--506}, editor={Huang, Ruhua}, author={Spinde, Timo and Hamborg, Felix and Gipp, Bela} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/51921"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Spinde, Timo</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2020</dcterms:issued> <dc:contributor>Gipp, Bela</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51921"/> <dc:creator>Hamborg, Felix</dc:creator> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>An Integrated Approach to Detect Media Bias in German News Articles</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Spinde, Timo</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-25T14:20:25Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-25T14:20:25Z</dc:date> <dc:contributor>Hamborg, Felix</dc:contributor> <dc:creator>Gipp, Bela</dc:creator> <dcterms:abstract xml:lang="eng">Media bias may often affect individuals' opinions on reported topics. Many existing methods that aim to identify such bias forms employ individual, specialized techniques and focus only on English texts. We propose to combine the state-of-the-art in order to further improve the performance in bias identification. Our prototype consists of three analysis components to identify media bias words in German news articles. We use an IDF-based component, a component utilizing a topic-dependent bias dictionary created using word embeddings, and an extensive dictionary of German emotional terms compiled from multiple sources. Finally, we discuss two not yet implemented analysis components that use machine learning and network analysis to identify media bias. All dictionary-based analysis components are experimentally extended with the use of general word embeddings. We also show the results of a user study.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>