Stress correlation function and linear response of Brownian particles
Stress correlation function and linear response of Brownian particles
Date
2020
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
The European Physical Journal E : Soft Matter and Biological Physics ; 43 (2020). - 70. - Springer. - ISSN 1292-8941. - eISSN 1292-895X
Abstract
Abstract.We determine the non-local stress autocorrelation tensor in an homogeneous and isotropic systemof interacting Brownian particles starting from the Smoluchowski equation of the configurational probabil-ity density. In order to relate stresses to particle displacements as appropriate in viscoelastic states, we gobeyond the usual hydrodynamic description obtained in the Zwanzig-Mori projection-operator formalismby introducing the proper irreducible dynamics following Cichocki and Hess, andKawasaki. Differentlyfrom these authors, we include transverse contributions as well. This recovers theexpression for the stressautocorrelation including the elastic terms in solid states as found for Newtonian and Langevin systems, incase that those are evaluated in the overdamped limit. Finally, we arguethat the found memory functionreduces to the shear and bulk viscosity in the hydrodynamic limit of smooth and slow fluctuations andderive the corresponding hydrodynamic equations.
Summary in another language
Subject (DDC)
530 Physics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
VOGEL, Florian, Matthias FUCHS, 2020. Stress correlation function and linear response of Brownian particles. In: The European Physical Journal E : Soft Matter and Biological Physics. Springer. 43, 70. ISSN 1292-8941. eISSN 1292-895X. Available under: doi: 10.1140/epje/i2020-11993-4BibTex
@article{Vogel2020Stres-51872, year={2020}, doi={10.1140/epje/i2020-11993-4}, title={Stress correlation function and linear response of Brownian particles}, volume={43}, issn={1292-8941}, journal={The European Physical Journal E : Soft Matter and Biological Physics}, author={Vogel, Florian and Fuchs, Matthias}, note={Article Number: 70} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51872"> <dc:creator>Fuchs, Matthias</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51872/3/Vogel_2-y5jj67k7kh4w6.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51872"/> <dc:contributor>Fuchs, Matthias</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-18T15:36:06Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Vogel, Florian</dc:contributor> <dcterms:title>Stress correlation function and linear response of Brownian particles</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-18T15:36:06Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51872/3/Vogel_2-y5jj67k7kh4w6.pdf"/> <dcterms:issued>2020</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Abstract.We determine the non-local stress autocorrelation tensor in an homogeneous and isotropic systemof interacting Brownian particles starting from the Smoluchowski equation of the configurational probabil-ity density. In order to relate stresses to particle displacements as appropriate in viscoelastic states, we gobeyond the usual hydrodynamic description obtained in the Zwanzig-Mori projection-operator formalismby introducing the proper irreducible dynamics following Cichocki and Hess, andKawasaki. Differentlyfrom these authors, we include transverse contributions as well. This recovers theexpression for the stressautocorrelation including the elastic terms in solid states as found for Newtonian and Langevin systems, incase that those are evaluated in the overdamped limit. Finally, we arguethat the found memory functionreduces to the shear and bulk viscosity in the hydrodynamic limit of smooth and slow fluctuations andderive the corresponding hydrodynamic equations.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:language>eng</dc:language> <dc:creator>Vogel, Florian</dc:creator> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes