A theory for the beta-relaxation process near the liquid-to-glass crossover


Dateien zu dieser Ressource

Prüfsumme: MD5:348777d6ef0766bc8074fbf6088cffbb

FUCHS, Matthias, Wolfgang GÖTZE, S. HILDEBRAND, Arnulf LATZ, 1992. A theory for the beta-relaxation process near the liquid-to-glass crossover. In: Journal of Physics: Condensed Matter. 4, pp. 7709-7744

@article{Fuchs1992theor-5178, title={A theory for the beta-relaxation process near the liquid-to-glass crossover}, year={1992}, doi={10.1088/0953-8984/4/38/007}, volume={4}, journal={Journal of Physics: Condensed Matter}, pages={7709--7744}, author={Fuchs, Matthias and Götze, Wolfgang and Hildebrand, S. and Latz, Arnulf} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/5178"> <dcterms:rights rdf:resource="https://creativecommons.org/licenses/by-nc-nd/2.0/legalcode"/> <dc:creator>Hildebrand, S.</dc:creator> <dc:contributor>Latz, Arnulf</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Götze, Wolfgang</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5178"/> <dc:format>application/pdf</dc:format> <dcterms:title>A theory for the beta-relaxation process near the liquid-to-glass crossover</dcterms:title> <dc:rights>deposit-license</dc:rights> <dc:contributor>Hildebrand, S.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:53:47Z</dcterms:available> <dc:contributor>Götze, Wolfgang</dc:contributor> <dc:creator>Latz, Arnulf</dc:creator> <dcterms:bibliographicCitation>First publ. in: Journal of Physics: Condensed Matter 4 (1992), pp. 7709-7744</dcterms:bibliographicCitation> <dcterms:abstract xml:lang="eng">The mode coupling theory for supercooled liquid dynamics finds a beta-relaxation regime on mesoscopic timeseales. It is caused by the interplay between nonlinear interadions of density fluctuations and phonon-assisted hopping transport. In this regime all correlation functions and spectra can be expressed in terms of a single ß-correlator G, which is a homogeneous function of lime and two relevant control parameters. It is specified by a single number, namely the exponent parameter. Eight regions can be identified, where the equation for G can be solved by series expansions. The various possibilities are discussed in comparison with representative numerical solutions. For temperatures T sufficiently above the critical value Tc hopping effects can be neglected and a stretched susceptibility minimum is found as a crossover from von Sehweidler decay to critical decay. For T near Tc hopping effects balance the cage effect and this results on logarithmic scales in a rather abrupt crossover from the high-frequency delta-peak tail to the critical spectrum. For T telow Tc there appears a frequency window between two knees in the susceptibility spectrum, where hopping effects suppress the enhanced fractal spectra. There occurs a crossover from Debye relaxation to white noise. The resulting susceptibility minimum in the strongly supercooled state exhibits a subtle power law dependence on the separation parameter T - Tc. The measurable features in the susceptibilily, such as position and strength of the minimum, are evaluated and shown to characterize transparently the liquid-to-glass crossover as caused by the underlying glass transition singularity.</dcterms:abstract> <dc:contributor>Fuchs, Matthias</dc:contributor> <dc:creator>Fuchs, Matthias</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:53:47Z</dc:date> <dcterms:issued>1992</dcterms:issued> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

a_theory_for_the_beta_relaxation_process.pdf 134

Das Dokument erscheint in:

deposit-license Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: deposit-license

KOPS Suche


Mein Benutzerkonto