KOPS - The Institutional Repository of the University of Konstanz

StochNetV2 : A Tool for Automated Deep Abstractions for Stochastic Reaction Networks

StochNetV2 : A Tool for Automated Deep Abstractions for Stochastic Reaction Networks

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

REPIN, Denis, Nhat-Huy PHUNG, Tatjana PETROV, 2020. StochNetV2 : A Tool for Automated Deep Abstractions for Stochastic Reaction Networks. 17th International Conference, QEST 2020. Wien, Aug 31, 2020 - Sep 3, 2020. In: GRIBAUDO, Marco, ed., David N. JANSEN, ed., Anne REMKE, ed.. Quantitative Evaluation of Systems : 17th International Conference, QEST 2020, Vienna, Austria, August 31 - September 3, 2020, Proceedings. Cham:Springer, pp. 27-32. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-59853-2. Available under: doi: 10.1007/978-3-030-59854-9_4

@inproceedings{Repin2020Stoch-51770, title={StochNetV2 : A Tool for Automated Deep Abstractions for Stochastic Reaction Networks}, year={2020}, doi={10.1007/978-3-030-59854-9_4}, number={12289}, isbn={978-3-030-59853-2}, issn={0302-9743}, address={Cham}, publisher={Springer}, series={Lecture Notes in Computer Science}, booktitle={Quantitative Evaluation of Systems : 17th International Conference, QEST 2020, Vienna, Austria, August 31 - September 3, 2020, Proceedings}, pages={27--32}, editor={Gribaudo, Marco and Jansen, David N. and Remke, Anne}, author={Repin, Denis and Phung, Nhat-Huy and Petrov, Tatjana} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/51770"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">We present a toolbox for stochastic simulations with CRN models and their (automated) deep abstractions: a mixture density deep neural network trained on time-series data produced by the CRN. The optimal neural network architecture is learnt along with learning the transition kernel of the abstract process. Automated search of the architecture makes the method applicable directly to any given CRN, which is time-saving for deep learning experts and crucial for non-specialists. The tool was primarily designed to efficiently reproduce simulation traces of given complex stochastic reaction networks arising in systems biology research, possibly with multi-modal emergent phenotypes. It is at the same time applicable to any other application domain, where time-series measurements of a Markovian stochastic process are available by experiment or synthesised with simulation (e.g. are obtained from a rule-based description of the CRN).</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-13T10:30:45Z</dcterms:available> <dc:contributor>Repin, Denis</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-13T10:30:45Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Petrov, Tatjana</dc:creator> <dc:contributor>Phung, Nhat-Huy</dc:contributor> <dc:creator>Repin, Denis</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Phung, Nhat-Huy</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Petrov, Tatjana</dc:contributor> <dcterms:issued>2020</dcterms:issued> <dcterms:title>StochNetV2 : A Tool for Automated Deep Abstractions for Stochastic Reaction Networks</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51770"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account