Maximum Gap Minimization in Polylines

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

STANKOV, Toni, Sabine STORANDT, 2020. Maximum Gap Minimization in Polylines. 18th International Symposium, W2GIS 2020. Wuhan, China, Nov 13, 2020 - Nov 14, 2020. In: DI MARTINO, Sergio, ed., Zhixiang FANG, ed., Ki-Joune LI, ed.. Web and Wireless Geographical Information Systems : 18th International Symposium, W2GIS 2020, Wuhan, China, November 13-14, 2020, Proceedings. Cham:Springer, pp. 181-196. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-60951-1. Available under: doi: 10.1007/978-3-030-60952-8_19

@inproceedings{Stankov2020Maxim-51734, title={Maximum Gap Minimization in Polylines}, year={2020}, doi={10.1007/978-3-030-60952-8_19}, number={12473}, isbn={978-3-030-60951-1}, issn={0302-9743}, address={Cham}, publisher={Springer}, series={Lecture Notes in Computer Science}, booktitle={Web and Wireless Geographical Information Systems : 18th International Symposium, W2GIS 2020, Wuhan, China, November 13-14, 2020, Proceedings}, pages={181--196}, editor={Di Martino, Sergio and Fang, Zhixiang and Li, Ki-Joune}, author={Stankov, Toni and Storandt, Sabine} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:available rdf:datatype="">2020-11-11T09:37:29Z</dcterms:available> <dc:date rdf:datatype="">2020-11-11T09:37:29Z</dc:date> <dspace:isPartOfCollection rdf:resource=""/> <dc:creator>Stankov, Toni</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Stankov, Toni</dc:contributor> <bibo:uri rdf:resource=""/> <dcterms:title>Maximum Gap Minimization in Polylines</dcterms:title> <dcterms:rights rdf:resource=""/> <dcterms:issued>2020</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Storandt, Sabine</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">Given a polyline consisting of n segments, we study the problem of selecting k of its segments such that the maximum induced gap length without a selected segment is minimized. This optimization problem has applications in the domains of trajectory visualization (see Fig. 1) and facility location. We design several heuristics and exact algorithms for simple polylines, along with algorithm engineering techniques to achieve good practical running times even for large values of n and k. The fastest exact algorithm is based on dynamic programming and exhibits a running time of O(nk) while using space linear in n. Furthermore, we consider incremental problem variants. For the case where a given set of k segments shall be augmented by a single additional segment, we devise an optimal algorithm which runs in O(k+logn) on a suitable polyline representation. If not only a single segment but k′ segments shall be added, we can compute the optimal segment set in time O(nk′) by modifying the dynamic programming approach for the original problem. Experiments on large sets of real-world trajectories as well as artificial polylines show the trade-offs between quality and running time of the different approaches.</dcterms:abstract> <dc:contributor>Storandt, Sabine</dc:contributor> <dcterms:isPartOf rdf:resource=""/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account