Newsalyze : Enabling News Consumers to Understand Media Bias

No Thumbnail Available
Files
There are no files associated with this item.
Date
2020
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
JCDL '20 : Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020. - New York, NY : ACM, 2020. - pp. 455-456. - ISBN 978-1-4503-7585-6
Abstract
News is a central source of information for individuals to inform themselves on current topics. Knowing a news article's slant and authenticity is of crucial importance in times of "fake news," news bots, and centralization of media ownership. We introduce Newsalyze, a bias-aware news reader focusing on a subtle, yet powerful form of media bias, named bias by word choice and labeling (WCL). WCL bias can alter the assessment of entities reported in the news, e.g., "freedom fighters" vs. "terrorists." At the core of the analysis is a neural model that uses a news-adapted BERT language model to determine target-dependent sentiment, a high-level effect of WCL bias. While the analysis currently focuses on only this form of bias, the visualizations already reveal patterns of bias when contrasting articles (overview) and in-text instances of bias (article view).
Summary in another language
Subject (DDC)
320 Politics
Keywords
Conference
JCDL '20 : ACM/IEEE Joint Conference on Digital Libraries in 2020 (Virtual Event), Aug 1, 2020 - Aug 5, 2020, Wuhan, China
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690HAMBORG, Felix, Anastasia ZHUKOVA, Karsten DONNAY, Bela GIPP, 2020. Newsalyze : Enabling News Consumers to Understand Media Bias. JCDL '20 : ACM/IEEE Joint Conference on Digital Libraries in 2020 (Virtual Event). Wuhan, China, Aug 1, 2020 - Aug 5, 2020. In: JCDL '20 : Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020. New York, NY:ACM, pp. 455-456. ISBN 978-1-4503-7585-6. Available under: doi: 10.1145/3383583.3398561
BibTex
@inproceedings{Hamborg2020Newsa-51335,
  year={2020},
  doi={10.1145/3383583.3398561},
  title={Newsalyze : Enabling News Consumers to Understand Media Bias},
  isbn={978-1-4503-7585-6},
  publisher={ACM},
  address={New York, NY},
  booktitle={JCDL '20 : Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020},
  pages={455--456},
  author={Hamborg, Felix and Zhukova, Anastasia and Donnay, Karsten and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51335">
    <dc:creator>Donnay, Karsten</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Zhukova, Anastasia</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51335"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:contributor>Donnay, Karsten</dc:contributor>
    <dcterms:issued>2020</dcterms:issued>
    <dc:contributor>Zhukova, Anastasia</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-13T13:35:14Z</dc:date>
    <dcterms:title>Newsalyze : Enabling News Consumers to Understand Media Bias</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Hamborg, Felix</dc:contributor>
    <dcterms:abstract xml:lang="eng">News is a central source of information for individuals to inform themselves on current topics. Knowing a news article's slant and authenticity is of crucial importance in times of "fake news," news bots, and centralization of media ownership. We introduce Newsalyze, a bias-aware news reader focusing on a subtle, yet powerful form of media bias, named bias by word choice and labeling (WCL). WCL bias can alter the assessment of entities reported in the news, e.g., "freedom fighters" vs. "terrorists." At the core of the analysis is a neural model that uses a news-adapted BERT language model to determine target-dependent sentiment, a high-level effect of WCL bias. While the analysis currently focuses on only this form of bias, the visualizations already reveal patterns of bias when contrasting articles (overview) and in-text instances of bias (article view).</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-13T13:35:14Z</dcterms:available>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dc:creator>Gipp, Bela</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Hamborg, Felix</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed