KOPS - The Institutional Repository of the University of Konstanz

Identification of mitochondrial toxicants by combined in silico and in vitro studies : a structure-based view on the Adverse Outcome Pathway

Identification of mitochondrial toxicants by combined in silico and in vitro studies : a structure-based view on the Adverse Outcome Pathway

Cite This

Files in this item

Checksum: MD5:62ef6d7320977140aa99ad1c9e4246c2

TROGER, Florentina, Johannes DELP, Melina FUNKE, Wanda VAN DER STEL, Claire COLAS, Marcel LEIST, Bob VAN DE WATER, Gerhard F. ECKER, 2020. Identification of mitochondrial toxicants by combined in silico and in vitro studies : a structure-based view on the Adverse Outcome Pathway. In: Computational Toxicology. Elsevier. 14, 100123. eISSN 2468-1113. Available under: doi: 10.1016/j.comtox.2020.100123

@article{Troger2020Ident-51265, title={Identification of mitochondrial toxicants by combined in silico and in vitro studies : a structure-based view on the Adverse Outcome Pathway}, year={2020}, doi={10.1016/j.comtox.2020.100123}, volume={14}, journal={Computational Toxicology}, author={Troger, Florentina and Delp, Johannes and Funke, Melina and van der Stel, Wanda and Colas, Claire and Leist, Marcel and van de Water, Bob and Ecker, Gerhard F.}, note={Article Number: 100123} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/51265"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2020</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-08T13:52:23Z</dcterms:available> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dc:contributor>van de Water, Bob</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <dc:contributor>Funke, Melina</dc:contributor> <dc:contributor>van der Stel, Wanda</dc:contributor> <dc:creator>Leist, Marcel</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-08T13:52:23Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Troger, Florentina</dc:creator> <dc:contributor>Delp, Johannes</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51265"/> <dc:creator>Ecker, Gerhard F.</dc:creator> <dc:creator>van de Water, Bob</dc:creator> <dcterms:title>Identification of mitochondrial toxicants by combined in silico and in vitro studies : a structure-based view on the Adverse Outcome Pathway</dcterms:title> <dc:contributor>Troger, Florentina</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51265/1/Troger_2-1p28zaauda4467.pdf"/> <dc:creator>Delp, Johannes</dc:creator> <dc:creator>Colas, Claire</dc:creator> <dc:contributor>Colas, Claire</dc:contributor> <dc:contributor>Ecker, Gerhard F.</dc:contributor> <dc:creator>Funke, Melina</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51265/1/Troger_2-1p28zaauda4467.pdf"/> <dc:contributor>Leist, Marcel</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:abstract xml:lang="eng">Drugs that modulate mitochondrial function can cause severe adverse effects. Unfortunately, mitochondrial toxicity is often not detected in animal models, which stresses the need for predictive in silico approaches. In this study we present a model for predicting mitochondrial toxicity focusing on human mitochondrial respiratory complex I (CI) inhibition by combining structure-based methods with machine learning. The structure-based studies are based on CI inhibition by the pesticide rotenone, which is known to induce parkinsonian motor deficits, and its analogue deguelin. After predicting a common binding mode for these two compounds using induced-fit docking, two structure-based pharmacophore models were created and used for virtual screening of DrugBank and the Chemspace library. The hit list was further refined by three different machine learning models, and the top ranked compounds were selected for experimental testing. Using a tiered approach, the compounds were tested in three distinct in vitro assays, which led to the identification of three specific CI inhibitors. These results demonstrate that risk assessment and hazard analysis can benefit from combining structure-based methods and machine learning.</dcterms:abstract> <dc:creator>van der Stel, Wanda</dc:creator> </rdf:Description> </rdf:RDF>

Downloads since Oct 8, 2020 (Information about access statistics)

Troger_2-1p28zaauda4467.pdf 17

This item appears in the following Collection(s)

Search KOPS


Browse

My Account