KOPS - The Institutional Repository of the University of Konstanz

Identifying domains of applicability of machine learning models for materials science

Identifying domains of applicability of machine learning models for materials science

Cite This

Files in this item

Checksum: MD5:37bbca042329046931530e685aa28ffb

SUTTON, Christopher, Mario BOLEY, Luca M. GHIRINGHELLI, Matthias RUPP, Jilles VREEKEN, Matthias SCHEFFLER, 2020. Identifying domains of applicability of machine learning models for materials science. In: Nature communications. Nature Publishing Group. 11(1), 4428. eISSN 2041-1723. Available under: doi: 10.1038/s41467-020-17112-9

@article{Sutton2020Ident-51258, title={Identifying domains of applicability of machine learning models for materials science}, year={2020}, doi={10.1038/s41467-020-17112-9}, number={1}, volume={11}, journal={Nature communications}, author={Sutton, Christopher and Boley, Mario and Ghiringhelli, Luca M. and Rupp, Matthias and Vreeken, Jilles and Scheffler, Matthias}, note={Article Number: 4428} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/51258"> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Ghiringhelli, Luca M.</dc:contributor> <dc:contributor>Sutton, Christopher</dc:contributor> <dc:creator>Boley, Mario</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51258/1/Sutton_2-1auzvjbeeo0k13.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Rupp, Matthias</dc:contributor> <dc:contributor>Scheffler, Matthias</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-07T14:05:45Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-07T14:05:45Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51258"/> <dcterms:title>Identifying domains of applicability of machine learning models for materials science</dcterms:title> <dcterms:issued>2020</dcterms:issued> <dc:contributor>Boley, Mario</dc:contributor> <dc:creator>Ghiringhelli, Luca M.</dc:creator> <dc:contributor>Vreeken, Jilles</dc:contributor> <dc:creator>Vreeken, Jilles</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51258/1/Sutton_2-1auzvjbeeo0k13.pdf"/> <dc:creator>Scheffler, Matthias</dc:creator> <dc:creator>Rupp, Matthias</dc:creator> <dc:creator>Sutton, Christopher</dc:creator> <dcterms:abstract xml:lang="eng">Although machine learning (ML) models promise to substantially accelerate the discovery of novel materials, their performance is often still insufficient to draw reliable conclusions. Improved ML models are therefore actively researched, but their design is currently guided mainly by monitoring the average model test error. This can render different models indistinguishable although their performance differs substantially across materials, or it can make a model appear generally insufficient while it actually works well in specific sub-domains. Here, we present a method, based on subgroup discovery, for detecting domains of applicability (DA) of models within a materials class. The utility of this approach is demonstrated by analyzing three state-of-the-art ML models for predicting the formation energy of transparent conducting oxides. We find that, despite having a mutually indistinguishable and unsatisfactory average error, the models have DAs with distinctive features and notably improved performance.</dcterms:abstract> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>

Downloads since Oct 7, 2020 (Information about access statistics)

Sutton_2-1auzvjbeeo0k13.pdf 69

This item appears in the following Collection(s)

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search KOPS


Browse

My Account