Modified Scaling Relation for the Random-Field Ising Model

Cite This

Files in this item

Checksum: MD5:92053e434f9bf7e4fdbf2d12f52f4582

NOWAK, Ulrich, Klaus-Dieter USADEL, J. ESSER, 1998. Modified Scaling Relation for the Random-Field Ising Model. In: Physica / A [Statistical Mechanics and its Applications]. 250(1-4), pp. 1-7. Available under: doi: 10.1016/S0378-4371(97)00580-3

@article{Nowak1998Modif-5091, title={Modified Scaling Relation for the Random-Field Ising Model}, year={1998}, doi={10.1016/S0378-4371(97)00580-3}, number={1-4}, volume={250}, journal={Physica / A [Statistical Mechanics and its Applications]}, pages={1--7}, author={Nowak, Ulrich and Usadel, Klaus-Dieter and Esser, J.} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:date rdf:datatype="">2011-03-24T14:53:04Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Esser, J.</dc:contributor> <dcterms:issued>1998</dcterms:issued> <dc:creator>Esser, J.</dc:creator> <dspace:hasBitstream rdf:resource=""/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource=""/> <dc:format>application/pdf</dc:format> <dcterms:title>Modified Scaling Relation for the Random-Field Ising Model</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:rights rdf:resource=""/> <dc:contributor>Usadel, Klaus-Dieter</dc:contributor> <dcterms:available rdf:datatype="">2011-03-24T14:53:04Z</dcterms:available> <dcterms:abstract xml:lang="eng">We investigate the low-temperature critical behavior of the three-dimensional random-field Ising ferromagnet. By a scaling analysis we find that in the limit of temperature T → 0 the usual scaling relations have to be modified as far as the exponent α of the specific heat is concerned. At zero temperature, the Rushbrooke equation is modified to α + 2β + γ = 1, an equation which we expect to be valid also for other systems with similar critical behavior. We test the scaling theory numerically for the three-dimensional random-field Ising system with Gaussian probability distribution of the random fields by a combination of calculations of exact ground states with an integer optimization algorithm and Monte Carlo methods. By a finite-size scaling analysis we calculate the critical exponents ν ≈ 1.0, β ≈ 0.05, ӯ ≈ 2.9, γ ≈ 1.5 and α ≈ −0.55.</dcterms:abstract> <bibo:uri rdf:resource=""/> <dcterms:bibliographicCitation>Publ. in: Physica / A [Statistical Mechanics and its Applications], Vol. 250 (1998), 1-4, pp. 1-7</dcterms:bibliographicCitation> <dc:contributor>Nowak, Ulrich</dc:contributor> <dcterms:hasPart rdf:resource=""/> <dc:creator>Nowak, Ulrich</dc:creator> <dc:creator>Usadel, Klaus-Dieter</dc:creator> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

Nowak_1998_ModifiedScaling.pdf 233

This item appears in the following Collection(s)

Search KOPS


My Account