Data-Informed Parameter Synthesis for Population Markov Chains

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

HAJNAL, Matej, Morgane NOUVIAN, Tatjana PETROV, David SAFRANEK, 2019. Data-Informed Parameter Synthesis for Population Markov Chains. 17th international conference, CMSB 2019. Trieste, Italy, Sep 18, 2019 - Sep 20, 2019. In: BORTOLUSSI, Luca, ed., Guido SANGUINETTI, ed.. Computational methods in systems biology : 17th international conference, CMSB 2019, Trieste, Italy, September 18-20, 2019 : proceedings. Cham:Springer, pp. 383-386. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-31303-6. Available under: doi: 10.1007/978-3-030-31304-3_32

@inproceedings{Hajnal2019-09-17DataI-50675, title={Data-Informed Parameter Synthesis for Population Markov Chains}, year={2019}, doi={10.1007/978-3-030-31304-3_32}, number={11773}, isbn={978-3-030-31303-6}, issn={0302-9743}, address={Cham}, publisher={Springer}, series={Lecture Notes in Computer Science / Lecture notes in bioinformatics}, booktitle={Computational methods in systems biology : 17th international conference, CMSB 2019, Trieste, Italy, September 18-20, 2019 : proceedings}, pages={383--386}, editor={Bortolussi, Luca and Sanguinetti, Guido}, author={Hajnal, Matej and Nouvian, Morgane and Petrov, Tatjana and Safranek, David} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:creator>Safranek, David</dc:creator> <dcterms:issued>2019-09-17</dcterms:issued> <dc:creator>Hajnal, Matej</dc:creator> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="">2020-09-03T07:15:02Z</dcterms:available> <dcterms:isPartOf rdf:resource=""/> <bibo:uri rdf:resource=""/> <dcterms:isPartOf rdf:resource=""/> <dcterms:isPartOf rdf:resource=""/> <dc:creator>Petrov, Tatjana</dc:creator> <dc:creator>Nouvian, Morgane</dc:creator> <dspace:isPartOfCollection rdf:resource=""/> <dc:contributor>Hajnal, Matej</dc:contributor> <dcterms:abstract xml:lang="eng">Population models are widely used to model different phenomena: animal collectives such as social insects, flocking birds, schooling fish, or humans within societies, as well as molecular species inside a cell, cells forming a tissue. Animal collectives show remarkable self-organisation towards emergent behaviours without centralised control. Quantitative models of the underlying mechanisms can directly serve important societal concerns (for example, prediction of seismic activity [5]), inspire the design of distributed algorithms (for example, ant colony algorithm [1]), or aid robust design and engineering of collective, adaptive systems under given functionality and resources, which is recently gaining attention in vision of smart cities [3, 4]. Quantitative prediction of the behaviour of a population of agents over time and space, each having several behavioural modes, results in a high-dimensional, non-linear, and stochastic system [2]. Hence, computational modelling with population models is challenging, especially when the model parameters are unknown and experiments are expensive.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource=""/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:date rdf:datatype="">2020-09-03T07:15:02Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Nouvian, Morgane</dc:contributor> <dspace:isPartOfCollection rdf:resource=""/> <dc:contributor>Safranek, David</dc:contributor> <dc:contributor>Petrov, Tatjana</dc:contributor> <dcterms:title>Data-Informed Parameter Synthesis for Population Markov Chains</dcterms:title> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account