Type of Publication: | Contribution to a conference collection |
Publication status: | Published |
Author: | Hajnal, Matej; Nouvian, Morgane; Petrov, Tatjana; Safranek, David |
Year of publication: | 2019 |
Conference: | 17th international conference, CMSB 2019, Sep 18, 2019 - Sep 20, 2019, Trieste, Italy |
Published in: | Computational methods in systems biology : 17th international conference, CMSB 2019, Trieste, Italy, September 18-20, 2019 : proceedings / Bortolussi, Luca; Sanguinetti, Guido (ed.). - Cham : Springer, 2019. - (Lecture Notes in Computer Science / Lecture notes in bioinformatics ; 11773). - pp. 383-386. - ISSN 0302-9743. - eISSN 1611-3349. - ISBN 978-3-030-31303-6 |
DOI (citable link): | https://dx.doi.org/10.1007/978-3-030-31304-3_32 |
Summary: |
Population models are widely used to model different phenomena: animal collectives such as social insects, flocking birds, schooling fish, or humans within societies, as well as molecular species inside a cell, cells forming a tissue. Animal collectives show remarkable self-organisation towards emergent behaviours without centralised control. Quantitative models of the underlying mechanisms can directly serve important societal concerns (for example, prediction of seismic activity [5]), inspire the design of distributed algorithms (for example, ant colony algorithm [1]), or aid robust design and engineering of collective, adaptive systems under given functionality and resources, which is recently gaining attention in vision of smart cities [3, 4]. Quantitative prediction of the behaviour of a population of agents over time and space, each having several behavioural modes, results in a high-dimensional, non-linear, and stochastic system [2]. Hence, computational modelling with population models is challenging, especially when the model parameters are unknown and experiments are expensive.
|
Subject (DDC): | 570 Biosciences, Biology |
Bibliography of Konstanz: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
HAJNAL, Matej, Morgane NOUVIAN, Tatjana PETROV, David SAFRANEK, 2019. Data-Informed Parameter Synthesis for Population Markov Chains. 17th international conference, CMSB 2019. Trieste, Italy, Sep 18, 2019 - Sep 20, 2019. In: BORTOLUSSI, Luca, ed., Guido SANGUINETTI, ed.. Computational methods in systems biology : 17th international conference, CMSB 2019, Trieste, Italy, September 18-20, 2019 : proceedings. Cham:Springer, pp. 383-386. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-31303-6. Available under: doi: 10.1007/978-3-030-31304-3_32
@inproceedings{Hajnal2019-09-17DataI-50675, title={Data-Informed Parameter Synthesis for Population Markov Chains}, year={2019}, doi={10.1007/978-3-030-31304-3_32}, number={11773}, isbn={978-3-030-31303-6}, issn={0302-9743}, address={Cham}, publisher={Springer}, series={Lecture Notes in Computer Science / Lecture notes in bioinformatics}, booktitle={Computational methods in systems biology : 17th international conference, CMSB 2019, Trieste, Italy, September 18-20, 2019 : proceedings}, pages={383--386}, editor={Bortolussi, Luca and Sanguinetti, Guido}, author={Hajnal, Matej and Nouvian, Morgane and Petrov, Tatjana and Safranek, David} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/50675"> <dc:creator>Safranek, David</dc:creator> <dcterms:issued>2019-09-17</dcterms:issued> <dc:creator>Hajnal, Matej</dc:creator> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-03T07:15:02Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50675"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/43615"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Petrov, Tatjana</dc:creator> <dc:creator>Nouvian, Morgane</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/43615"/> <dc:contributor>Hajnal, Matej</dc:contributor> <dcterms:abstract xml:lang="eng">Population models are widely used to model different phenomena: animal collectives such as social insects, flocking birds, schooling fish, or humans within societies, as well as molecular species inside a cell, cells forming a tissue. Animal collectives show remarkable self-organisation towards emergent behaviours without centralised control. Quantitative models of the underlying mechanisms can directly serve important societal concerns (for example, prediction of seismic activity [5]), inspire the design of distributed algorithms (for example, ant colony algorithm [1]), or aid robust design and engineering of collective, adaptive systems under given functionality and resources, which is recently gaining attention in vision of smart cities [3, 4]. Quantitative prediction of the behaviour of a population of agents over time and space, each having several behavioural modes, results in a high-dimensional, non-linear, and stochastic system [2]. Hence, computational modelling with population models is challenging, especially when the model parameters are unknown and experiments are expensive.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-03T07:15:02Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Nouvian, Morgane</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <dc:contributor>Safranek, David</dc:contributor> <dc:contributor>Petrov, Tatjana</dc:contributor> <dcterms:title>Data-Informed Parameter Synthesis for Population Markov Chains</dcterms:title> </rdf:Description> </rdf:RDF>