Parameter-Dependent Stochastic Optimal Control in Finite Discrete Time

Thumbnail Image
Date
2020
Authors
Zapata-García, José Miguel
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Journal of Optimization Theory and Applications ; 186 (2020), 2. - pp. 644-666. - Springer. - ISSN 0022-3239. - eISSN 1573-2878
Abstract
We prove a general existence result in stochastic optimal control in discrete time, where controls, taking values in conditional metric spaces, depend on the current information and past decisions. The general form of the problem lies beyond the scope of standard techniques in stochastic control theory, the main novelty is a formalization in conditional metric space and the use of conditional analysis. We illustrate the existence result by several examples such as wealth-dependent utility maximization under risk constraints and utility maximization with a conditional dimension. We also provide a discussion as to how our methods compare to techniques based on random sets.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690JAMNESHAN, Asgar, Michael KUPPER, José Miguel ZAPATA-GARCÍA, 2020. Parameter-Dependent Stochastic Optimal Control in Finite Discrete Time. In: Journal of Optimization Theory and Applications. Springer. 186(2), pp. 644-666. ISSN 0022-3239. eISSN 1573-2878. Available under: doi: 10.1007/s10957-020-01711-z
BibTex
@article{Jamneshan2020-08Param-50449,
  year={2020},
  doi={10.1007/s10957-020-01711-z},
  title={Parameter-Dependent Stochastic Optimal Control in Finite Discrete Time},
  number={2},
  volume={186},
  issn={0022-3239},
  journal={Journal of Optimization Theory and Applications},
  pages={644--666},
  author={Jamneshan, Asgar and Kupper, Michael and Zapata-García, José Miguel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50449">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Jamneshan, Asgar</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50449"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:issued>2020-08</dcterms:issued>
    <dcterms:title>Parameter-Dependent Stochastic Optimal Control in Finite Discrete Time</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Jamneshan, Asgar</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-08-05T12:25:40Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-08-05T12:25:40Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50449/1/Jamneshan_2-1pdmequoms8w06.pdf"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Kupper, Michael</dc:contributor>
    <dcterms:abstract xml:lang="eng">We prove a general existence result in stochastic optimal control in discrete time, where controls, taking values in conditional metric spaces, depend on the current information and past decisions. The general form of the problem lies beyond the scope of standard techniques in stochastic control theory, the main novelty is a formalization in conditional metric space and the use of conditional analysis. We illustrate the existence result by several examples such as wealth-dependent utility maximization under risk constraints and utility maximization with a conditional dimension. We also provide a discussion as to how our methods compare to techniques based on random sets.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50449/1/Jamneshan_2-1pdmequoms8w06.pdf"/>
    <dc:creator>Zapata-García, José Miguel</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Kupper, Michael</dc:creator>
    <dc:contributor>Zapata-García, José Miguel</dc:contributor>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes