Integration through transients for inelastic hard sphere fluids

Lade...
Vorschaubild
Dateien
Kranz_2-11h57r1wb5poq5.pdf
Kranz_2-11h57r1wb5poq5.pdfGröße: 1.88 MBDownloads: 22
Datum
2020
Autor:innen
Kranz, W. Till
Zippelius, Annette
Sperl, Matthias
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Link zur Lizenz
oops
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Physical Review Fluids. American Physical Society (APS). 2020, 5(2), 024305. eISSN 2469-990X. Available under: doi: 10.1103/PhysRevFluids.5.024305
Zusammenfassung

We compute the rheological properties of inelastic hard spheres in steady shear flow for general shear rates and densities. Starting from the microscopic dynamics we generalize the Integration Through Transients formalism to a fluid of dissipative, randomly driven granular particles. The stress relaxation function is computed approximately within a mode-coupling theory—based on the physical picture that relaxation of shear is dominated by slow structural relaxation, as the glass transition is approached. The transient build-up of stress in steady shear is thus traced back to transient density correlations which are computed self-consistently within mode-coupling theory. The glass transition is signaled by the appearance of a yield stress and a divergence of the Newtonian viscosity, characterizing linear response. For shear rates comparable to the structural relaxation time, the stress becomes independent of shear rate and we observe shear thinning, while for the largest shear rates Bagnold scaling, i.e., a quadratic increase of shear stress with shear rate, is recovered. The rheological properties are qualitatively similar for all values of ɛ, the coefficient of restitution; however, the magnitude of the stress as well as the range of shear thinning and thickening show significant dependence on the inelasticity.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KRANZ, W. Till, Fabian FRAHSA, Annette ZIPPELIUS, Matthias FUCHS, Matthias SPERL, 2020. Integration through transients for inelastic hard sphere fluids. In: Physical Review Fluids. American Physical Society (APS). 2020, 5(2), 024305. eISSN 2469-990X. Available under: doi: 10.1103/PhysRevFluids.5.024305
BibTex
@article{Kranz2020Integ-50207,
  year={2020},
  doi={10.1103/PhysRevFluids.5.024305},
  title={Integration through transients for inelastic hard sphere fluids},
  number={2},
  volume={5},
  journal={Physical Review Fluids},
  author={Kranz, W. Till and Frahsa, Fabian and Zippelius, Annette and Fuchs, Matthias and Sperl, Matthias},
  note={Article Number: 024305}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50207">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-10T12:40:19Z</dcterms:available>
    <dc:creator>Kranz, W. Till</dc:creator>
    <dc:creator>Sperl, Matthias</dc:creator>
    <dcterms:title>Integration through transients for inelastic hard sphere fluids</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Frahsa, Fabian</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Sperl, Matthias</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Fuchs, Matthias</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50207/1/Kranz_2-11h57r1wb5poq5.pdf"/>
    <dcterms:issued>2020</dcterms:issued>
    <dc:creator>Frahsa, Fabian</dc:creator>
    <dc:contributor>Kranz, W. Till</dc:contributor>
    <dc:creator>Zippelius, Annette</dc:creator>
    <dc:contributor>Zippelius, Annette</dc:contributor>
    <dcterms:abstract xml:lang="eng">We compute the rheological properties of inelastic hard spheres in steady shear flow for general shear rates and densities. Starting from the microscopic dynamics we generalize the Integration Through Transients formalism to a fluid of dissipative, randomly driven granular particles. The stress relaxation function is computed approximately within a mode-coupling theory—based on the physical picture that relaxation of shear is dominated by slow structural relaxation, as the glass transition is approached. The transient build-up of stress in steady shear is thus traced back to transient density correlations which are computed self-consistently within mode-coupling theory. The glass transition is signaled by the appearance of a yield stress and a divergence of the Newtonian viscosity, characterizing linear response. For shear rates comparable to the structural relaxation time, the stress becomes independent of shear rate and we observe shear thinning, while for the largest shear rates Bagnold scaling, i.e., a quadratic increase of shear stress with shear rate, is recovered. The rheological properties are qualitatively similar for all values of ɛ, the coefficient of restitution; however, the magnitude of the stress as well as the range of shear thinning and thickening show significant dependence on the inelasticity.</dcterms:abstract>
    <dc:creator>Fuchs, Matthias</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50207/1/Kranz_2-11h57r1wb5poq5.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50207"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-10T12:40:19Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen