Type of Publication: | Contribution to a conference collection |
Publication status: | Published |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-2-1m0k5nmmycukv1 |
Author: | Gavriushina, Iuliia; Sampson, Oliver; Berthold, Michael; Pohlmeier, Winfried; Borgelt, Christian |
Year of publication: | 2019 |
Conference: | 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Dec 16, 2019 - Dec 19, 2019, Boca Raton, FL, USA |
Published in: | 18th IEEE International Conference On Machine Learning And Applications (ICMLA). - Piscataway : IEEE, 2019. - pp. 1800-1805. - ISBN 978-1-72814-551-8 |
DOI (citable link): | https://dx.doi.org/10.1109/ICMLA.2019.00291 |
Summary: |
Index investing has an advantage over active investment strategies, because less frequent trading results in lower expenses, yielding higher long-term returns. Index tracking is a popular investment strategy that attempts to find a portfolio replicating the performance of a collection of investment vehicles. This paper considers index tracking from the perspective of solution space exploration. Three search space heuristics in combination with three portfolio tracking error methods are compared in order to select a tracking portfolio with returns that mimic a benchmark index. Experimental results conducted on real-world datasets show that Widening, a metaheuristic using diverse parallel search paths, finds superior solutions than those found by the reference heuristics. Presented here are the first results using Widening on time-series data.
|
Subject (DDC): | 004 Computer Science |
Link to License: | In Copyright |
Bibliography of Konstanz: | Yes |
GAVRIUSHINA, Iuliia, Oliver SAMPSON, Michael BERTHOLD, Winfried POHLMEIER, Christian BORGELT, 2019. Widened Learning of Index Tracking Portfolios. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). Boca Raton, FL, USA, Dec 16, 2019 - Dec 19, 2019. In: 18th IEEE International Conference On Machine Learning And Applications (ICMLA). Piscataway:IEEE, pp. 1800-1805. ISBN 978-1-72814-551-8. Available under: doi: 10.1109/ICMLA.2019.00291
@inproceedings{Gavriushina2019-12Widen-50111, title={Widened Learning of Index Tracking Portfolios}, year={2019}, doi={10.1109/ICMLA.2019.00291}, isbn={978-1-72814-551-8}, address={Piscataway}, publisher={IEEE}, booktitle={18th IEEE International Conference On Machine Learning And Applications (ICMLA)}, pages={1800--1805}, author={Gavriushina, Iuliia and Sampson, Oliver and Berthold, Michael and Pohlmeier, Winfried and Borgelt, Christian} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/50111"> <dc:contributor>Sampson, Oliver</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50111/1/Gavriushina_2-1m0k5nmmycukv1.pdf"/> <dc:creator>Pohlmeier, Winfried</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50111"/> <dc:creator>Berthold, Michael</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50111/1/Gavriushina_2-1m0k5nmmycukv1.pdf"/> <dc:language>eng</dc:language> <dc:creator>Sampson, Oliver</dc:creator> <dcterms:title>Widened Learning of Index Tracking Portfolios</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Gavriushina, Iuliia</dc:creator> <dc:contributor>Gavriushina, Iuliia</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Pohlmeier, Winfried</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/46"/> <dc:contributor>Berthold, Michael</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-03T07:32:42Z</dc:date> <dc:contributor>Borgelt, Christian</dc:contributor> <dcterms:abstract xml:lang="eng">Index investing has an advantage over active investment strategies, because less frequent trading results in lower expenses, yielding higher long-term returns. Index tracking is a popular investment strategy that attempts to find a portfolio replicating the performance of a collection of investment vehicles. This paper considers index tracking from the perspective of solution space exploration. Three search space heuristics in combination with three portfolio tracking error methods are compared in order to select a tracking portfolio with returns that mimic a benchmark index. Experimental results conducted on real-world datasets show that Widening, a metaheuristic using diverse parallel search paths, finds superior solutions than those found by the reference heuristics. Presented here are the first results using Widening on time-series data.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/46"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2019-12</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Borgelt, Christian</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-03T07:32:42Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>
Gavriushina_2-1m0k5nmmycukv1.pdf | 258 |