Circuit theory of crossed Andreev reflection

Cite This

Files in this item

Checksum: MD5:25b6a9fe8cd0129d3478327896f53001

MORTEN, Jan Peter, Arne BRATAAS, Wolfgang BELZIG, 2006. Circuit theory of crossed Andreev reflection. In: Physical Review B. 74, pp. 214510-1, 11. Available under: doi: 10.1103/PhysRevB.74.214510

@article{Morten2006Circu-4976, title={Circuit theory of crossed Andreev reflection}, year={2006}, doi={10.1103/PhysRevB.74.214510}, volume={74}, journal={Physical Review B}, pages={214510--1, 11}, author={Morten, Jan Peter and Brataas, Arne and Belzig, Wolfgang} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:contributor>Belzig, Wolfgang</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:available rdf:datatype="">2011-03-24T14:52:15Z</dcterms:available> <dspace:hasBitstream rdf:resource=""/> <dc:language>eng</dc:language> <dcterms:bibliographicCitation>First publ. in: Physical Review B 74 (2006), pp. 214510-1-11</dcterms:bibliographicCitation> <dc:format>application/pdf</dc:format> <dcterms:hasPart rdf:resource=""/> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:isPartOf rdf:resource=""/> <dcterms:abstract xml:lang="eng">We consider transport in a three-terminal device attached to one superconducting and two normal-metal terminals, using the circuit theory of mesoscopic superconductivity. We compute the nonlocal conductance of the current out of the first normal-metal terminal in response to a bias voltage between the second normal-metal terminal and the superconducting terminal. The nonlocal conductance is given by competing contributions from crossed Andreev reflection and electron cotunneling, and we determine the contribution from each process. The nonlocal conductance vanishes when there is no resistance between the superconducting terminal and the device, in agreement with previous theoretical work. Electron cotunneling dominates when there is a finite resistance between the device and the superconducting reservoir. Dephasing is taken into account, and the characteristic time scale is the particle dwell time. This gives rise to an effective Thouless energy. Both the conductance due to crossed Andreev reflection and electron cotunneling depend strongly on the Thouless energy. We suggest experimental determination of the conductance due to crossed Andreev reflection and electron cotunneling in measurement of both energy and charge flow into one normal-metal terminal in response to a bias voltage between the other normal-metal terminal and the superconductor.</dcterms:abstract> <dc:creator>Brataas, Arne</dc:creator> <dcterms:issued>2006</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dc:creator>Morten, Jan Peter</dc:creator> <dcterms:rights rdf:resource=""/> <dc:contributor>Morten, Jan Peter</dc:contributor> <dc:contributor>Brataas, Arne</dc:contributor> <dc:creator>Belzig, Wolfgang</dc:creator> <dcterms:title>Circuit theory of crossed Andreev reflection</dcterms:title> <dc:date rdf:datatype="">2011-03-24T14:52:15Z</dc:date> <bibo:uri rdf:resource=""/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

PhysRevB_74_214510.pdf 376

This item appears in the following Collection(s)

terms-of-use Except where otherwise noted, this item's license is described as terms-of-use

Search KOPS


My Account