KOPS - The Institutional Repository of the University of Konstanz

ModelSpeX : Model Specification Using Explainable Artificial Intelligence Methods

ModelSpeX : Model Specification Using Explainable Artificial Intelligence Methods

Cite This

Files in this item

Checksum: MD5:3d34161deaade88ae01402233b75fe0f

SCHLEGEL, Udo, Eren CAKMAK, Daniel A. KEIM, 2020. ModelSpeX : Model Specification Using Explainable Artificial Intelligence Methods. International Workshop on Machine Learning in Visualisation for Big Data : MLVis 2020. Norrköping, Sweden, May 25, 2020 - May 29, 2020. In: ARCHAMBAULT, Daniel, ed. and others. Machine Learning Methods in Visualisation for Big Data 2020. Genf:The Eurographics Association, pp. 7-11. ISBN 978-3-03868-113-7. Available under: doi: 10.2312/mlvis.20201100

@inproceedings{Schlegel2020Model-49721, title={ModelSpeX : Model Specification Using Explainable Artificial Intelligence Methods}, year={2020}, doi={10.2312/mlvis.20201100}, isbn={978-3-03868-113-7}, address={Genf}, publisher={The Eurographics Association}, booktitle={Machine Learning Methods in Visualisation for Big Data 2020}, pages={7--11}, editor={Archambault, Daniel}, author={Schlegel, Udo and Cakmak, Eren and Keim, Daniel A.} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/49721"> <dcterms:title>ModelSpeX : Model Specification Using Explainable Artificial Intelligence Methods</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49721/1/Schlegel_2-qm5kpmaxjly15.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49721"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Schlegel, Udo</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Cakmak, Eren</dc:contributor> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Explainable artificial intelligence (XAI) methods aim to reveal the non-transparent decision-making mechanisms of black-box models. The evaluation of insight generated by such XAI methods remains challenging as the applied techniques depend on many factors (e.g., parameters and human interpretation). We propose ModelSpeX, a visual analytics workflow to interactively extract human-centered rule-sets to generate model specifications from black-box models (e.g., neural networks). The workflow enables to reason about the underlying problem, to extract decision rule sets, and to evaluate the suitability of the model for a particular task. An exemplary usage scenario walks an analyst trough the steps of the workflow to show the applicability.</dcterms:abstract> <dc:creator>Schlegel, Udo</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2020</dcterms:issued> <dc:creator>Cakmak, Eren</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49721/1/Schlegel_2-qm5kpmaxjly15.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-28T10:03:28Z</dc:date> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-28T10:03:28Z</dcterms:available> </rdf:Description> </rdf:RDF>

Downloads since May 28, 2020 (Information about access statistics)

Schlegel_2-qm5kpmaxjly15.pdf 39

This item appears in the following Collection(s)

Search KOPS


Browse

My Account