Multiobjective model predictive control of a parabolic advection-diffusion-reaction equation

Thumbnail Image
Date
2020
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Mathematics ; 8 (2020), 5. - 777. - MDPI AG. - eISSN 2227-7390
Abstract
In the present paper a multiobjective optimal control problem governed by a linear parabolic advection-diffusion-reaction equation is considered. The optimal controls are computed by applying model predictive control (MPC), which is a method for controlling dynamical systems over long or infinite time horizons by successively computing optimal controls over a moving finite time horizon. Numerical experiments illustrate that the proposed solution approach can be successfully applied although some of the assumptions made in [1,2] can not be guaranteed for the studied tests.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
multiobjectice optimization; multiobjective optimal control; model predictive control; evolution problems; advection-diffusion equations
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BANHOLZER, Stefan, Giulia FABRINI, Lars GRÜNE, Stefan VOLKWEIN, 2020. Multiobjective model predictive control of a parabolic advection-diffusion-reaction equation. In: Mathematics. MDPI AG. 8(5), 777. eISSN 2227-7390. Available under: doi: 10.3390/math8050777
BibTex
@article{Banholzer2020Multi-49272.2,
  year={2020},
  doi={10.3390/math8050777},
  title={Multiobjective model predictive control of a parabolic advection-diffusion-reaction equation},
  number={5},
  volume={8},
  journal={Mathematics},
  author={Banholzer, Stefan and Fabrini, Giulia and Grüne, Lars and Volkwein, Stefan},
  note={Article Number: 777}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49272.2">
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Banholzer, Stefan</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49272.2/1/Banholzer_2-13q9e8ietk8797.pdf"/>
    <dc:contributor>Banholzer, Stefan</dc:contributor>
    <dcterms:abstract xml:lang="eng">In the present paper a multiobjective optimal control problem governed by a linear parabolic advection-diffusion-reaction equation is considered. The optimal controls are computed by applying model predictive control (MPC), which is a method for controlling dynamical systems over long or infinite time horizons by successively computing optimal controls over a moving finite time horizon. Numerical experiments illustrate that the proposed solution approach can be successfully applied although some of the assumptions made in [1,2] can not be guaranteed for the studied tests.</dcterms:abstract>
    <dc:contributor>Grüne, Lars</dc:contributor>
    <dc:contributor>Fabrini, Giulia</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49272.2/1/Banholzer_2-13q9e8ietk8797.pdf"/>
    <dcterms:title>Multiobjective model predictive control of a parabolic advection-diffusion-reaction equation</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Fabrini, Giulia</dc:creator>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-18T09:54:22Z</dcterms:available>
    <dc:creator>Grüne, Lars</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Volkwein, Stefan</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49272.2"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-18T09:54:22Z</dc:date>
    <dc:contributor>Volkwein, Stefan</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Unknown

Version History

Now showing 1 - 2 of 2
VersionDateSummary
2*
2020-06-18 09:45:59
2020-04-23 12:10:29
* Selected version