Type of Publication: | Working Paper/Technical Report |
Publication status: | Published |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-2-125tfy98m8rbn0 |
Author: | Al-Saafin, Doaa; Garloff, Jürgen |
Year of publication: | 2020 |
Series: | Konstanzer Schriften in Mathematik ; 390 |
DOI (citable link): | https://dx.doi.org/10.1515/spma-2020-0009 |
Summary: |
Let A = [aij] be a real symmetric matrix. If f: (0,oo) --> [0,oo) is a Bernstein function, a sufficient condition for the matrix [f(aij)] to have only one positive eigenvalue is presented. By using this result, new results for a symmetric matrix with exactly one positive eigenvalue, e.g., properties of its Hadamard powers, are derived.
|
Subject (DDC): | 510 Mathematics |
Keywords: | Bernstein function, Hadamard power, Hadamard inverse, distance matrix, infinitely divisible matrix, conditionally negative semidefinite matrix |
Comment on publication: | Erschienen in: Special Matrices ; 8 (2020), 1. - S. 98-103. - de Gruyter. - eISSN 2300-7451 |
Link to License: | Attribution 4.0 International |
Bibliography of Konstanz: | Yes |
AL-SAAFIN, Doaa, Jürgen GARLOFF, 2020. Sufficient conditions for symmetric matrices to have exactly one positive eigenvalue. Available under: doi: 10.1515/spma-2020-0009
@techreport{AlSaafin2020-04-03Suffi-49263, series={Konstanzer Schriften in Mathematik}, title={Sufficient conditions for symmetric matrices to have exactly one positive eigenvalue}, year={2020}, doi={10.1515/spma-2020-0009}, number={390}, author={Al-Saafin, Doaa and Garloff, Jürgen}, note={Erschienen in: Special Matrices ; 8 (2020), 1. - S. 98-103. - de Gruyter. - eISSN 2300-7451} }
Al-Saafin_2-125tfy98m8rbn0.pdf | 301 |