Sufficient conditions for symmetric matrices to have exactly one positive eigenvalue
Sufficient conditions for symmetric matrices to have exactly one positive eigenvalue
Date
2020
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik; 390
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Working Paper/Technical Report
Publication status
Published
Published in
Abstract
Let A = [aij] be a real symmetric matrix. If f: (0,oo) --> [0,oo) is a Bernstein function, a sufficient condition for the matrix [f(aij)] to have only one positive eigenvalue is presented. By using this result, new results for a symmetric matrix with exactly one positive eigenvalue, e.g., properties of its Hadamard powers, are derived.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Bernstein function, Hadamard power, Hadamard inverse, distance matrix, infinitely divisible matrix, conditionally negative semidefinite matrix
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
AL-SAAFIN, Doaa, Jürgen GARLOFF, 2020. Sufficient conditions for symmetric matrices to have exactly one positive eigenvalue. Available under: doi: 10.1515/spma-2020-0009BibTex
@techreport{AlSaafin2020-04-03Suffi-49263, year={2020}, doi={10.1515/spma-2020-0009}, series={Konstanzer Schriften in Mathematik}, title={Sufficient conditions for symmetric matrices to have exactly one positive eigenvalue}, number={390}, author={Al-Saafin, Doaa and Garloff, Jürgen}, note={Erschienen in: Special Matrices ; 8 (2020), 1. - S. 98-103. - de Gruyter. - eISSN 2300-7451} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49263"> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49263"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Al-Saafin, Doaa</dc:contributor> <dc:creator>Garloff, Jürgen</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:abstract xml:lang="eng">Let A = [a<sub>ij</sub>] be a real symmetric matrix. If f: (0,oo) --> [0,oo) is a Bernstein function, a sufficient condition for the matrix [f(a<sub>ij</sub>)] to have only one positive eigenvalue is presented. By using this result, new results for a symmetric matrix with exactly one positive eigenvalue, e.g., properties of its Hadamard powers, are derived.</dcterms:abstract> <dcterms:issued>2020-04-03</dcterms:issued> <dcterms:title>Sufficient conditions for symmetric matrices to have exactly one positive eigenvalue</dcterms:title> <dc:contributor>Garloff, Jürgen</dc:contributor> <dc:creator>Al-Saafin, Doaa</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49263/3/Al-Saafin_2-125tfy98m8rbn0.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-23T07:57:12Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49263/3/Al-Saafin_2-125tfy98m8rbn0.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-23T07:57:12Z</dc:date> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Erschienen in: Special Matrices ; 8 (2020), 1. - S. 98-103. - de Gruyter. - eISSN 2300-7451
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes