PRIMAGE project : predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers

Lade...
Vorschaubild
Dateien
Marti-Bonmati_2-rcvn8sc11o892.pdf
Marti-Bonmati_2-rcvn8sc11o892.pdfGröße: 1.1 MBDownloads: 1528
Datum
2020
Autor:innen
Martí-Bonmatí, Luis
Alberich-Bayarri, Ángel
Ladenstein, Ruth
Blanquer, Ignacio
Segrelles, J. Damian
Cerdá-Alberich, Leonor
Gkontra, Polyxeni
Hero, Barbara
et al.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
European Union (EU): 826494
Projekt
PRIMAGE - PRedictive In-silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
European Radiology Experimental. SpringerOpen. 2020, 4(1), 22. eISSN 2509-9280. Available under: doi: 10.1186/s41747-020-00150-9
Zusammenfassung

PRIMAGE is one of the largest and more ambitious research projects dealing with medical imaging, artificial intelligence and cancer treatment in children. It is a 4-year European Commission-financed project that has 16 European partners in the consortium, including the European Society for Paediatric Oncology, two imaging biobanks, and three prominent European paediatric oncology units. The project is constructed as an observational in silico study involving high-quality anonymised datasets (imaging, clinical, molecular, and genetics) for the training and validation of machine learning and multiscale algorithms. The open cloud-based platform will offer precise clinical assistance for phenotyping (diagnosis), treatment allocation (prediction), and patient endpoints (prognosis), based on the use of imaging biomarkers, tumour growth simulation, advanced visualisation of confidence scores, and machine-learning approaches. The decision support prototype will be constructed and validated on two paediatric cancers: neuroblastoma and diffuse intrinsic pontine glioma. External validation will be performed on data recruited from independent collaborative centres. Final results will be available for the scientific community at the end of the project, and ready for translation to other malignant solid tumours.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Artificial intelligence, Biomarkers (tumour), Cloud computing, Diffuse intrinsic pontine glioma, Neuroblastoma
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690MARTÍ-BONMATÍ, Luis, Ángel ALBERICH-BAYARRI, Ruth LADENSTEIN, Ignacio BLANQUER, J. Damian SEGRELLES, Leonor CERDÁ-ALBERICH, Polyxeni GKONTRA, Barbara HERO, Daniel A. KEIM, Wolfgang JENTNER, 2020. PRIMAGE project : predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers. In: European Radiology Experimental. SpringerOpen. 2020, 4(1), 22. eISSN 2509-9280. Available under: doi: 10.1186/s41747-020-00150-9
BibTex
@article{MartiBonmati2020-04-03PRIMA-49224,
  year={2020},
  doi={10.1186/s41747-020-00150-9},
  title={PRIMAGE project : predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers},
  number={1},
  volume={4},
  journal={European Radiology Experimental},
  author={Martí-Bonmatí, Luis and Alberich-Bayarri, Ángel and Ladenstein, Ruth and Blanquer, Ignacio and Segrelles, J. Damian and Cerdá-Alberich, Leonor and Gkontra, Polyxeni and Hero, Barbara and Keim, Daniel A. and Jentner, Wolfgang},
  note={Article Number: 22}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49224">
    <dcterms:abstract xml:lang="eng">PRIMAGE is one of the largest and more ambitious research projects dealing with medical imaging, artificial intelligence and cancer treatment in children. It is a 4-year European Commission-financed project that has 16 European partners in the consortium, including the European Society for Paediatric Oncology, two imaging biobanks, and three prominent European paediatric oncology units. The project is constructed as an observational in silico study involving high-quality anonymised datasets (imaging, clinical, molecular, and genetics) for the training and validation of machine learning and multiscale algorithms. The open cloud-based platform will offer precise clinical assistance for phenotyping (diagnosis), treatment allocation (prediction), and patient endpoints (prognosis), based on the use of imaging biomarkers, tumour growth simulation, advanced visualisation of confidence scores, and machine-learning approaches. The decision support prototype will be constructed and validated on two paediatric cancers: neuroblastoma and diffuse intrinsic pontine glioma. External validation will be performed on data recruited from independent collaborative centres. Final results will be available for the scientific community at the end of the project, and ready for translation to other malignant solid tumours.</dcterms:abstract>
    <dc:creator>Alberich-Bayarri, Ángel</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-16T13:45:03Z</dcterms:available>
    <dc:creator>Martí-Bonmatí, Luis</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49224/1/Marti-Bonmati_2-rcvn8sc11o892.pdf"/>
    <dc:contributor>Segrelles, J. Damian</dc:contributor>
    <dc:contributor>Cerdá-Alberich, Leonor</dc:contributor>
    <dc:creator>Ladenstein, Ruth</dc:creator>
    <dc:creator>Gkontra, Polyxeni</dc:creator>
    <dc:contributor>Hero, Barbara</dc:contributor>
    <dc:contributor>Martí-Bonmatí, Luis</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:issued>2020-04-03</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Jentner, Wolfgang</dc:creator>
    <dc:contributor>Alberich-Bayarri, Ángel</dc:contributor>
    <dc:contributor>Blanquer, Ignacio</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-16T13:45:03Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49224"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Ladenstein, Ruth</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49224/1/Marti-Bonmati_2-rcvn8sc11o892.pdf"/>
    <dc:creator>Cerdá-Alberich, Leonor</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Hero, Barbara</dc:creator>
    <dc:creator>Segrelles, J. Damian</dc:creator>
    <dc:creator>Blanquer, Ignacio</dc:creator>
    <dcterms:title>PRIMAGE project : predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers</dcterms:title>
    <dc:contributor>Gkontra, Polyxeni</dc:contributor>
    <dc:contributor>Jentner, Wolfgang</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen