Journal article:
PRIMAGE project : predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers

Thumbnail Image
Date
April 3, 2020
Editors
Martí-Bonmatí, Luis
Alberich-Bayarri, Ángel
Ladenstein, Ruth
Blanquer, Ignacio
Segrelles, J. Damian
Cerdá-Alberich, Leonor
Gkontra, Polyxeni
Hero, Barbara
relationships.isEditorOf
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
Project
826494
EU project number
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Abstract
PRIMAGE is one of the largest and more ambitious research projects dealing with medical imaging, artificial intelligence and cancer treatment in children. It is a 4-year European Commission-financed project that has 16 European partners in the consortium, including the European Society for Paediatric Oncology, two imaging biobanks, and three prominent European paediatric oncology units. The project is constructed as an observational in silico study involving high-quality anonymised datasets (imaging, clinical, molecular, and genetics) for the training and validation of machine learning and multiscale algorithms. The open cloud-based platform will offer precise clinical assistance for phenotyping (diagnosis), treatment allocation (prediction), and patient endpoints (prognosis), based on the use of imaging biomarkers, tumour growth simulation, advanced visualisation of confidence scores, and machine-learning approaches. The decision support prototype will be constructed and validated on two paediatric cancers: neuroblastoma and diffuse intrinsic pontine glioma. External validation will be performed on data recruited from independent collaborative centres. Final results will be available for the scientific community at the end of the project, and ready for translation to other malignant solid tumours.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Artificial intelligence, Biomarkers (tumour), Cloud computing, Diffuse intrinsic pontine glioma, Neuroblastoma
Published in
European Radiology Experimental ; 4 (2020), 1. - 22. - SpringerOpen. - eISSN 2509-9280
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690MARTÍ-BONMATÍ, Luis, Ángel ALBERICH-BAYARRI, Ruth LADENSTEIN, Ignacio BLANQUER, J. Damian SEGRELLES, Leonor CERDÁ-ALBERICH, Polyxeni GKONTRA, Barbara HERO, Daniel A. KEIM, Wolfgang JENTNER, 2020. PRIMAGE project : predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers. In: European Radiology Experimental. SpringerOpen. 4(1), 22. eISSN 2509-9280. Available under: doi: 10.1186/s41747-020-00150-9
BibTex
@article{MartiBonmati2020-04-03PRIMA-49224,
  year={2020},
  doi={10.1186/s41747-020-00150-9},
  title={PRIMAGE project : predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers},
  number={1},
  volume={4},
  journal={European Radiology Experimental},
  author={Martí-Bonmatí, Luis and Alberich-Bayarri, Ángel and Ladenstein, Ruth and Blanquer, Ignacio and Segrelles, J. Damian and Cerdá-Alberich, Leonor and Gkontra, Polyxeni and Hero, Barbara and Keim, Daniel A. and Jentner, Wolfgang},
  note={Article Number: 22}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49224">
    <dcterms:abstract xml:lang="eng">PRIMAGE is one of the largest and more ambitious research projects dealing with medical imaging, artificial intelligence and cancer treatment in children. It is a 4-year European Commission-financed project that has 16 European partners in the consortium, including the European Society for Paediatric Oncology, two imaging biobanks, and three prominent European paediatric oncology units. The project is constructed as an observational in silico study involving high-quality anonymised datasets (imaging, clinical, molecular, and genetics) for the training and validation of machine learning and multiscale algorithms. The open cloud-based platform will offer precise clinical assistance for phenotyping (diagnosis), treatment allocation (prediction), and patient endpoints (prognosis), based on the use of imaging biomarkers, tumour growth simulation, advanced visualisation of confidence scores, and machine-learning approaches. The decision support prototype will be constructed and validated on two paediatric cancers: neuroblastoma and diffuse intrinsic pontine glioma. External validation will be performed on data recruited from independent collaborative centres. Final results will be available for the scientific community at the end of the project, and ready for translation to other malignant solid tumours.</dcterms:abstract>
    <dc:creator>Alberich-Bayarri, Ángel</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-16T13:45:03Z</dcterms:available>
    <dc:creator>Martí-Bonmatí, Luis</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49224/1/Marti-Bonmati_2-rcvn8sc11o892.pdf"/>
    <dc:contributor>Segrelles, J. Damian</dc:contributor>
    <dc:contributor>Cerdá-Alberich, Leonor</dc:contributor>
    <dc:creator>Ladenstein, Ruth</dc:creator>
    <dc:creator>Gkontra, Polyxeni</dc:creator>
    <dc:contributor>Hero, Barbara</dc:contributor>
    <dc:contributor>Martí-Bonmatí, Luis</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:issued>2020-04-03</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Jentner, Wolfgang</dc:creator>
    <dc:contributor>Alberich-Bayarri, Ángel</dc:contributor>
    <dc:contributor>Blanquer, Ignacio</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-16T13:45:03Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49224"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Ladenstein, Ruth</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49224/1/Marti-Bonmati_2-rcvn8sc11o892.pdf"/>
    <dc:creator>Cerdá-Alberich, Leonor</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Hero, Barbara</dc:creator>
    <dc:creator>Segrelles, J. Damian</dc:creator>
    <dc:creator>Blanquer, Ignacio</dc:creator>
    <dcterms:title>PRIMAGE project : predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers</dcterms:title>
    <dc:contributor>Gkontra, Polyxeni</dc:contributor>
    <dc:contributor>Jentner, Wolfgang</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes
Link to research data
Description of supplementary data