KOPS - The Institutional Repository of the University of Konstanz

PRIMAGE project : predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers

PRIMAGE project : predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers

Cite This

Files in this item

Checksum: MD5:21acca9d820ff51b6c5c24f33c936dc2

MARTÍ-BONMATÍ, Luis, Ángel ALBERICH-BAYARRI, Ruth LADENSTEIN, Ignacio BLANQUER, J. Damian SEGRELLES, Leonor CERDÁ-ALBERICH, Polyxeni GKONTRA, Barbara HERO, Daniel A. KEIM, Wolfgang JENTNER, 2020. PRIMAGE project : predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers. In: European Radiology Experimental. SpringerOpen. 4(1), 22. eISSN 2509-9280. Available under: doi: 10.1186/s41747-020-00150-9

@article{MartiBonmati2020-04-03PRIMA-49224, title={PRIMAGE project : predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers}, year={2020}, doi={10.1186/s41747-020-00150-9}, number={1}, volume={4}, journal={European Radiology Experimental}, author={Martí-Bonmatí, Luis and Alberich-Bayarri, Ángel and Ladenstein, Ruth and Blanquer, Ignacio and Segrelles, J. Damian and Cerdá-Alberich, Leonor and Gkontra, Polyxeni and Hero, Barbara and Keim, Daniel A. and Jentner, Wolfgang}, note={Article Number: 22} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/49224"> <dc:creator>Alberich-Bayarri, Ángel</dc:creator> <dc:contributor>Jentner, Wolfgang</dc:contributor> <dc:contributor>Alberich-Bayarri, Ángel</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Gkontra, Polyxeni</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:issued>2020-04-03</dcterms:issued> <dc:language>eng</dc:language> <dcterms:title>PRIMAGE project : predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers</dcterms:title> <dc:contributor>Cerdá-Alberich, Leonor</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-16T13:45:03Z</dc:date> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49224/1/Marti-Bonmati_2-rcvn8sc11o892.pdf"/> <dc:creator>Jentner, Wolfgang</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Blanquer, Ignacio</dc:creator> <dc:contributor>Blanquer, Ignacio</dc:contributor> <dc:contributor>Martí-Bonmatí, Luis</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49224/1/Marti-Bonmati_2-rcvn8sc11o892.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-16T13:45:03Z</dcterms:available> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Hero, Barbara</dc:contributor> <dc:creator>Martí-Bonmatí, Luis</dc:creator> <dc:creator>Segrelles, J. Damian</dc:creator> <dc:creator>Cerdá-Alberich, Leonor</dc:creator> <dc:contributor>Gkontra, Polyxeni</dc:contributor> <dc:contributor>Segrelles, J. Damian</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Ladenstein, Ruth</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49224"/> <dcterms:abstract xml:lang="eng">PRIMAGE is one of the largest and more ambitious research projects dealing with medical imaging, artificial intelligence and cancer treatment in children. It is a 4-year European Commission-financed project that has 16 European partners in the consortium, including the European Society for Paediatric Oncology, two imaging biobanks, and three prominent European paediatric oncology units. The project is constructed as an observational in silico study involving high-quality anonymised datasets (imaging, clinical, molecular, and genetics) for the training and validation of machine learning and multiscale algorithms. The open cloud-based platform will offer precise clinical assistance for phenotyping (diagnosis), treatment allocation (prediction), and patient endpoints (prognosis), based on the use of imaging biomarkers, tumour growth simulation, advanced visualisation of confidence scores, and machine-learning approaches. The decision support prototype will be constructed and validated on two paediatric cancers: neuroblastoma and diffuse intrinsic pontine glioma. External validation will be performed on data recruited from independent collaborative centres. Final results will be available for the scientific community at the end of the project, and ready for translation to other malignant solid tumours.</dcterms:abstract> <dc:creator>Hero, Barbara</dc:creator> <dc:creator>Ladenstein, Ruth</dc:creator> </rdf:Description> </rdf:RDF>

Downloads since Apr 16, 2020 (Information about access statistics)

Marti-Bonmati_2-rcvn8sc11o892.pdf 1261

This item appears in the following Collection(s)

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search KOPS


Browse

My Account