Reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDE

Lade...
Vorschaubild
Dateien
Bernreuther_2-14ynfk4rb5c8r3.pdf
Bernreuther_2-14ynfk4rb5c8r3.pdfGröße: 8.08 MBDownloads: 143
Datum
2022
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published
Erschienen in
HERZOG, Roland, ed., Matthias HEINKENSCHLOSS, ed., Dante KALISE, ed. and others. Optimization and Control for Partial Differential Equations : Uncertainty quantification, open and closed-loop control, and shape optimization. Berlin: De Gruyter, 2022, pp. 1-32. Radon Series on Computational and Applied Mathematics. 29. ISBN 978-3-11-069596-0. Available under: doi: 10.1515/9783110695984-001
Zusammenfassung

In this paper, an optimization problem governed by a nonsmooth semilinear elliptic partial differential equation is considered. A reduced order approach is applied in order to obtain a computationally fast and certified numerical solution approach. Using the reduced basis method and efficient a-posteriori error estimation for the primal and dual equations, an adaptive algorithm is developed and tested successfully for several numerical examples.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BERNREUTHER, Marco, Georg MÜLLER, Stefan VOLKWEIN, 2022. Reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDE. In: HERZOG, Roland, ed., Matthias HEINKENSCHLOSS, ed., Dante KALISE, ed. and others. Optimization and Control for Partial Differential Equations : Uncertainty quantification, open and closed-loop control, and shape optimization. Berlin: De Gruyter, 2022, pp. 1-32. Radon Series on Computational and Applied Mathematics. 29. ISBN 978-3-11-069596-0. Available under: doi: 10.1515/9783110695984-001
BibTex
@incollection{Bernreuther2022Reduc-49208.3,
  year={2022},
  doi={10.1515/9783110695984-001},
  title={Reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDE},
  number={29},
  isbn={978-3-11-069596-0},
  publisher={De Gruyter},
  address={Berlin},
  series={Radon Series on Computational and Applied Mathematics},
  booktitle={Optimization and Control for Partial Differential Equations : Uncertainty quantification, open and closed-loop control, and shape optimization},
  pages={1--32},
  editor={Herzog, Roland and Heinkenschloß, Matthias and Kalise, Dante},
  author={Bernreuther, Marco and Müller, Georg and Volkwein, Stefan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49208.3">
    <dcterms:title>Reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDE</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Müller, Georg</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49208.3"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49208.3/1/Bernreuther_2-14ynfk4rb5c8r3.pdf"/>
    <dc:creator>Volkwein, Stefan</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Bernreuther, Marco</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49208.3/1/Bernreuther_2-14ynfk4rb5c8r3.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-23T12:57:31Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-23T12:57:31Z</dcterms:available>
    <dc:creator>Bernreuther, Marco</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:abstract xml:lang="eng">In this paper, an optimization problem governed by a nonsmooth semilinear elliptic partial differential equation is considered. A reduced order approach is applied in order to obtain a computationally fast and certified numerical solution approach. Using the reduced basis method and efficient a-posteriori error estimation for the primal and dual equations, an adaptive algorithm is developed and tested successfully for several numerical examples.</dcterms:abstract>
    <dc:contributor>Volkwein, Stefan</dc:contributor>
    <dc:creator>Müller, Georg</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
3*
2021-02-23 12:37:23
2020-04-09 07:58:30
* Ausgewählte Version