Type of Publication: | Contribution to a conference collection |
Publication status: | Published |
Author: | Fan, Chunling; Lin, Hanhe; Hosu, Vlad; Zhang, Yun; Jiang, Qingshan; Hamzaoui, Raouf; Saupe, Dietmar |
Year of publication: | 2019 |
Conference: | 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX), Jun 5, 2019 - Jun 7, 2019, Berlin |
Published in: | 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX) / IEEE Computer Society, / (ed.). - Piscataway : IEEE, 2019. - pp. 167-173. - ISBN 978-1-5386-8212-8 |
DOI (citable link): | https://dx.doi.org/10.1109/QoMEX.2019.8743204 |
Summary: |
The Satisfied User Ratio (SUR) curve for a lossy image compression scheme, e.g., JPEG, characterizes the probability distribution of the Just Noticeable Difference (JND) level, the smallest distortion level that can be perceived by a subject. We propose the first deep learning approach to predict such SUR curves. Instead of the direct approach of regressing the SUR curve itself for a given reference image, our model is trained on pairs of images, original and compressed. Relying on a Siamese Convolutional Neural Network (CNN), feature pooling, a fully connected regression-head, and transfer learning, we achieved a good prediction performance. Experiments on the MCL-JCI dataset showed a mean Bhattacharyya distance between the predicted and the original JND distributions of only 0.072.
|
Subject (DDC): | 004 Computer Science |
Keywords: | Satisfied User Ratio, Just Noticeable Difference, Convolutional Neural Network, Deep Learning |
Bibliography of Konstanz: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
FAN, Chunling, Hanhe LIN, Vlad HOSU, Yun ZHANG, Qingshan JIANG, Raouf HAMZAOUI, Dietmar SAUPE, 2019. SUR-Net : Predicting the Satisfied User Ratio Curve for Image Compression with Deep Learning. 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX). Berlin, Jun 5, 2019 - Jun 7, 2019. In: IEEE COMPUTER SOCIETY, /, ed.. 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX). Piscataway:IEEE, pp. 167-173. ISBN 978-1-5386-8212-8. Available under: doi: 10.1109/QoMEX.2019.8743204
@inproceedings{Fan2019SURNe-49118, title={SUR-Net : Predicting the Satisfied User Ratio Curve for Image Compression with Deep Learning}, year={2019}, doi={10.1109/QoMEX.2019.8743204}, isbn={978-1-5386-8212-8}, address={Piscataway}, publisher={IEEE}, booktitle={2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX)}, pages={167--173}, editor={IEEE Computer Society, /}, author={Fan, Chunling and Lin, Hanhe and Hosu, Vlad and Zhang, Yun and Jiang, Qingshan and Hamzaoui, Raouf and Saupe, Dietmar} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/49118"> <dc:creator>Zhang, Yun</dc:creator> <dc:contributor>Jiang, Qingshan</dc:contributor> <dc:creator>Hamzaoui, Raouf</dc:creator> <dcterms:abstract xml:lang="eng">The Satisfied User Ratio (SUR) curve for a lossy image compression scheme, e.g., JPEG, characterizes the probability distribution of the Just Noticeable Difference (JND) level, the smallest distortion level that can be perceived by a subject. We propose the first deep learning approach to predict such SUR curves. Instead of the direct approach of regressing the SUR curve itself for a given reference image, our model is trained on pairs of images, original and compressed. Relying on a Siamese Convolutional Neural Network (CNN), feature pooling, a fully connected regression-head, and transfer learning, we achieved a good prediction performance. Experiments on the MCL-JCI dataset showed a mean Bhattacharyya distance between the predicted and the original JND distributions of only 0.072.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:issued>2019</dcterms:issued> <dc:creator>Jiang, Qingshan</dc:creator> <dc:creator>Saupe, Dietmar</dc:creator> <dc:creator>Fan, Chunling</dc:creator> <dc:contributor>Hosu, Vlad</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Saupe, Dietmar</dc:contributor> <dc:contributor>Fan, Chunling</dc:contributor> <dc:creator>Hosu, Vlad</dc:creator> <dc:contributor>Lin, Hanhe</dc:contributor> <dc:creator>Lin, Hanhe</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49118"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-23T09:05:30Z</dc:date> <dc:contributor>Hamzaoui, Raouf</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-23T09:05:30Z</dcterms:available> <dc:contributor>Zhang, Yun</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:language>eng</dc:language> <dcterms:title>SUR-Net : Predicting the Satisfied User Ratio Curve for Image Compression with Deep Learning</dcterms:title> </rdf:Description> </rdf:RDF>