KOPS - The Institutional Repository of the University of Konstanz

SUR-Net : Predicting the Satisfied User Ratio Curve for Image Compression with Deep Learning

SUR-Net : Predicting the Satisfied User Ratio Curve for Image Compression with Deep Learning

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

FAN, Chunling, Hanhe LIN, Vlad HOSU, Yun ZHANG, Qingshan JIANG, Raouf HAMZAOUI, Dietmar SAUPE, 2019. SUR-Net : Predicting the Satisfied User Ratio Curve for Image Compression with Deep Learning. 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX). Berlin, Jun 5, 2019 - Jun 7, 2019. In: IEEE COMPUTER SOCIETY, /, ed.. 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX). Piscataway:IEEE, pp. 167-173. ISBN 978-1-5386-8212-8. Available under: doi: 10.1109/QoMEX.2019.8743204

@inproceedings{Fan2019SURNe-49118, title={SUR-Net : Predicting the Satisfied User Ratio Curve for Image Compression with Deep Learning}, year={2019}, doi={10.1109/QoMEX.2019.8743204}, isbn={978-1-5386-8212-8}, address={Piscataway}, publisher={IEEE}, booktitle={2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX)}, pages={167--173}, editor={IEEE Computer Society, /}, author={Fan, Chunling and Lin, Hanhe and Hosu, Vlad and Zhang, Yun and Jiang, Qingshan and Hamzaoui, Raouf and Saupe, Dietmar} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/49118"> <dc:creator>Zhang, Yun</dc:creator> <dc:contributor>Jiang, Qingshan</dc:contributor> <dc:creator>Hamzaoui, Raouf</dc:creator> <dcterms:abstract xml:lang="eng">The Satisfied User Ratio (SUR) curve for a lossy image compression scheme, e.g., JPEG, characterizes the probability distribution of the Just Noticeable Difference (JND) level, the smallest distortion level that can be perceived by a subject. We propose the first deep learning approach to predict such SUR curves. Instead of the direct approach of regressing the SUR curve itself for a given reference image, our model is trained on pairs of images, original and compressed. Relying on a Siamese Convolutional Neural Network (CNN), feature pooling, a fully connected regression-head, and transfer learning, we achieved a good prediction performance. Experiments on the MCL-JCI dataset showed a mean Bhattacharyya distance between the predicted and the original JND distributions of only 0.072.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:issued>2019</dcterms:issued> <dc:creator>Jiang, Qingshan</dc:creator> <dc:creator>Saupe, Dietmar</dc:creator> <dc:creator>Fan, Chunling</dc:creator> <dc:contributor>Hosu, Vlad</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Saupe, Dietmar</dc:contributor> <dc:contributor>Fan, Chunling</dc:contributor> <dc:creator>Hosu, Vlad</dc:creator> <dc:contributor>Lin, Hanhe</dc:contributor> <dc:creator>Lin, Hanhe</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49118"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-23T09:05:30Z</dc:date> <dc:contributor>Hamzaoui, Raouf</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-23T09:05:30Z</dcterms:available> <dc:contributor>Zhang, Yun</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:language>eng</dc:language> <dcterms:title>SUR-Net : Predicting the Satisfied User Ratio Curve for Image Compression with Deep Learning</dcterms:title> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account