Discrete-time k-positive linear systems

Cite This

Files in this item

Checksum: MD5:438c0d0776601be28db25e0e3b5099b6

ALSEIDI, Rola, Michael MARGALIOT, Jürgen GARLOFF, 2020. Discrete-time k-positive linear systems

@techreport{Alseidi2020Discr-48940, series={Konstanzer Schriften in Mathematik}, title={Discrete-time k-positive linear systems}, year={2020}, number={389}, author={Alseidi, Rola and Margaliot, Michael and Garloff, Jürgen} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/48940"> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48940/3/Alseidi_2-unelg2ub4v2n0.pdf"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Discrete-time k-positive linear systems</dcterms:title> <dc:creator>Garloff, Jürgen</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-04T16:02:00Z</dcterms:available> <dcterms:abstract xml:lang="eng">Positive systems play an important role in systems and control theory and have found many applications in multi-agent systems, neural networks, systems biology, and more. Positive systems map the nonnegative orthant to itself (and also the nonpositive orthant to itself). In other words, they map the set of vectors with zero sign variation to itself. In this note, discrete-time linear systems that map the set of vectors with up to k-1 sign variations to itself are introduced. For the special case k = 1 these reduce to discrete-time positive linear systems. Properties of these systems are analyzed using tools from the theory of sign-regular matrices. In particular, it is shown that almost every solution of such systems converges to the set of vectors with up to k-1 sign variations. It is also shown that these systems induce a positive dynamics of k-dimensional parallelotopes.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Alseidi, Rola</dc:creator> <dc:contributor>Margaliot, Michael</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48940/3/Alseidi_2-unelg2ub4v2n0.pdf"/> <dcterms:issued>2020</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-04T16:02:00Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Margaliot, Michael</dc:creator> <dc:contributor>Alseidi, Rola</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48940"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:contributor>Garloff, Jürgen</dc:contributor> </rdf:Description> </rdf:RDF>

Downloads since Mar 4, 2020 (Information about access statistics)

Alseidi_2-unelg2ub4v2n0.pdf 44

This item appears in the following Collection(s)

Search KOPS


Browse

My Account