Asymptotic laws for tagged-particle motion in glassy systems

Thumbnail Image
Date
1998
Authors
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Physical Review E ; 58 (1998), 3. - pp. 3384-3399
Abstract
Within mode-coupling theory for structural relaxation in simple systems, the asymptotic laws and their leading-asymptotic correction formulas are derived for the motion of a tagged particle near a glass-transition singularity. These analytic results are compared with numerical ones of the equations of motion evaluated for a tagged hard sphere moving in a hard-sphere system. It is found that the long-time part of the two-step relaxation process for the mean-squared displacement can be characterized by the a-relaxation scaling law and von Schweidlers power-law decay, while the critical-decay regime is dominated by the corrections to the leading power-law behavior. For parameters of interest for the interpretations of experimental data, the corrections to the leading asymptotic laws for the non-Gaussian parameter are found to be so large that the leading asymptotic results are altered qualitatively by the corrections. Results for the non-Gaussian parameter are shown to follow qualitatively the findings reported in the molecular-dynamics-simulations work by Kob and Andersen [Phys. Rev. E 51, 4626 (1995)].
Summary in another language
Subject (DDC)
530 Physics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690FUCHS, Matthias, Wolfgang GÖTZE, Matthias R. MAYR, 1998. Asymptotic laws for tagged-particle motion in glassy systems. In: Physical Review E. 58(3), pp. 3384-3399. Available under: doi: 10.1103/PhysRevE.58.3384
BibTex
@article{Fuchs1998Asymp-4875,
  year={1998},
  doi={10.1103/PhysRevE.58.3384},
  title={Asymptotic laws for tagged-particle motion in glassy systems},
  number={3},
  volume={58},
  journal={Physical Review E},
  pages={3384--3399},
  author={Fuchs, Matthias and Götze, Wolfgang and Mayr, Matthias R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/4875">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/4875/1/Asymptotic_laws_for_tagged_particle_motion_in_glassy_systems.pdf"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Götze, Wolfgang</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:50:59Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/4875"/>
    <dcterms:title>Asymptotic laws for tagged-particle motion in glassy systems</dcterms:title>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:bibliographicCitation>First publ. in: Physical Review E 58 (1998), 3, pp. 3384-3399</dcterms:bibliographicCitation>
    <dc:contributor>Fuchs, Matthias</dc:contributor>
    <dcterms:abstract xml:lang="eng">Within mode-coupling theory for structural relaxation in simple systems, the asymptotic laws and their leading-asymptotic correction formulas are derived for the motion of a tagged particle near a glass-transition singularity. These analytic results are compared with numerical ones of the equations of motion evaluated for a tagged hard sphere moving in a hard-sphere system. It is found that the long-time part of the two-step relaxation process for the mean-squared displacement can be characterized by the a-relaxation scaling law and von Schweidlers power-law decay, while the critical-decay regime is dominated by the corrections to the leading power-law behavior. For parameters of interest for the interpretations of experimental data, the corrections to the leading asymptotic laws for the non-Gaussian parameter are found to be so large that the leading asymptotic results are altered qualitatively by the corrections. Results for the non-Gaussian parameter are shown to follow qualitatively the findings reported in the molecular-dynamics-simulations work by Kob and Andersen [Phys. Rev. E 51, 4626 (1995)].</dcterms:abstract>
    <dc:contributor>Mayr, Matthias R.</dc:contributor>
    <dc:format>application/pdf</dc:format>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Fuchs, Matthias</dc:creator>
    <dc:creator>Götze, Wolfgang</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:50:59Z</dc:date>
    <dcterms:issued>1998</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/4875/1/Asymptotic_laws_for_tagged_particle_motion_in_glassy_systems.pdf"/>
    <dc:creator>Mayr, Matthias R.</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed