Generic Structures

No Thumbnail Available
Files
There are no files associated with this item.
Date
2019
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Philosophia Mathematica ; 27 (2019), 3. - pp. 362-380. - Oxford University Press (OUP). - ISSN 0031-8019. - eISSN 1744-6406
Abstract
In this article ideas from Kit Fine’s theory of arbitrary objects are applied to questions regarding mathematical structuralism. I discuss how sui generis mathematical structures can be viewed as generic systems of mathematical objects, where mathematical objects are conceived of as arbitrary objects in Fine’s sense.
Summary in another language
Subject (DDC)
100 Philosophy
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690HORSTEN, Leon, 2019. Generic Structures. In: Philosophia Mathematica. Oxford University Press (OUP). 27(3), pp. 362-380. ISSN 0031-8019. eISSN 1744-6406. Available under: doi: 10.1093/philmat/nky015
BibTex
@article{Horsten2019-10-01Gener-48648,
  year={2019},
  doi={10.1093/philmat/nky015},
  title={Generic Structures},
  number={3},
  volume={27},
  issn={0031-8019},
  journal={Philosophia Mathematica},
  pages={362--380},
  author={Horsten, Leon}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48648">
    <dc:creator>Horsten, Leon</dc:creator>
    <dcterms:issued>2019-10-01</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-14T13:37:38Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-14T13:37:38Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48648"/>
    <dc:contributor>Horsten, Leon</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Generic Structures</dcterms:title>
    <dcterms:abstract xml:lang="eng">In this article ideas from Kit Fine’s theory of arbitrary objects are applied to questions regarding mathematical structuralism. I discuss how sui generis mathematical structures can be viewed as generic systems of mathematical objects, where mathematical objects are conceived of as arbitrary objects in Fine’s sense.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes