Kupfergalliumdiselenid-Dünnschichten für Anwendungen in der Photovoltaik

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:1c769d93791035e7ee2526bffe852eff

SCHENKER, Ortwin, 2002. Kupfergalliumdiselenid-Dünnschichten für Anwendungen in der Photovoltaik

@phdthesis{Schenker2002Kupfe-4800, title={Kupfergalliumdiselenid-Dünnschichten für Anwendungen in der Photovoltaik}, year={2002}, author={Schenker, Ortwin}, address={Konstanz}, school={Universität Konstanz} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/4800"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:50:25Z</dc:date> <dc:contributor>Schenker, Ortwin</dc:contributor> <dc:rights>deposit-license</dc:rights> <dc:creator>Schenker, Ortwin</dc:creator> <dcterms:issued>2002</dcterms:issued> <dc:language>deu</dc:language> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103416863-3868037-7"/> <dcterms:alternative>Copper-Gallium-Diselenide Thin Films for Applications in Photovoltaics</dcterms:alternative> <dc:format>application/pdf</dc:format> <dcterms:title>Kupfergalliumdiselenid-Dünnschichten für Anwendungen in der Photovoltaik</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/4800"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:50:25Z</dcterms:available> <dcterms:abstract xml:lang="eng">The emphasis of this work was laid on investigations of processes that would allow in principle the industrial production of CuGaSe2 thin films for photovoltaic applications. Most attention was given to the SEL-RTP Method (stacked-elemental-layers rapid-thermal-processing) where a stack of elements is deposited sequentially. Afterwards the chalcopyrite layer is synthesized in a short high temperature step from this precursor. First the absorber layers seemed to be very suitable for solar cells. Single phase material was obtained. Structural as well as in situ resistivity measurements indicated that after a processing time of about six minutes the chalcopyrite formation was finished. A closer analysis of the absorber layers revealed that the elemental distribution over the depth of the layer was inhomogeneous. Loosely packed CuGaSe2 crystallites were embedded in a gallium and selenium rich matrix which was mainly localized close to the substrate. We found that the crucial factor for the CuGaSe2 formation is the formation temperature. In the usable temperature range below 600°C the affinity of the CuGaSe2 structure for the incorporation of gallium is not very pronounced. From this arises a discrepancy between the composition of the total layer and the actual composition of the crystallites. The maximum cell efficiency that was obtained from SEL-RTP processed CuGaSe2 absorbers was 3,8 The influence of the reaction kinetics can be seen most clearly when compared with absorbers based on CuIn1-xGaxSe2 . Here already process temperatures of 400°C result in single phase chalcopyrite material. With this CuIn1-GaxSe2 absorber layers maximum efficiencies of 10.2 could be obtained. This results allow us to conclude that the low efficiencies reached in this work with CuGaSe2 where mainly limited by the absorber layers.</dcterms:abstract> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

DissertationOrtwinSchenker.pdf 206

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto