What Does It Take to be a Successful Data Scientist?

Cite This

Files in this item

Checksum: MD5:9c74a90a06f8147f2af2f70c5d70eee2

BERTHOLD, Michael R., 2019. What Does It Take to be a Successful Data Scientist?. In: Harvard Data Science Review. MIT Press. 1(2). eISSN 2644-2353. Available under: doi: 10.1162/99608f92.e0eaabfc

@article{Berthold2019-11-01Succe-47982, title={What Does It Take to be a Successful Data Scientist?}, year={2019}, doi={10.1162/99608f92.e0eaabfc}, number={2}, volume={1}, journal={Harvard Data Science Review}, author={Berthold, Michael R.} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/47982"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47982"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-12-11T13:26:56Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47982/1/Berthold_2-1rfm475k4cgkg9.pdf"/> <dcterms:title>What Does It Take to be a Successful Data Scientist?</dcterms:title> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-12-11T13:26:56Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Given recent claims that data science can be fully automated or made accessible to nondata scientists through easy-to-use tools, I describe different types of data science roles within an organization. I then provide a view on the required skill sets of successful data scientists and how they can be obtained, concluding that data science requires both a profound understanding of the underlying methods as well as exhaustive experience gained from real-world data science projects. Despite some easy wins in specific areas using automation or easy-to-use tools, successful data science projects still require education and training.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Berthold, Michael R.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47982/1/Berthold_2-1rfm475k4cgkg9.pdf"/> <dc:rights>Attribution 4.0 International</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2019-11-01</dcterms:issued> </rdf:Description> </rdf:RDF>

Downloads since Dec 11, 2019 (Information about access statistics)

Berthold_2-1rfm475k4cgkg9.pdf 209

This item appears in the following Collection(s)

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search KOPS


Browse

My Account